Какое строение имеют половые клетки. Мужские половые клетки

Мужские половые клетки называются сперматозоидами. Они образуются в извитых канальцах яичек из клеток, именуемых сперматогониями. Функция сперматозоида состоит в оплодотворении женской половой клетки (яйцеклетки)

Длина сперматозоида составляет около 0,05- 0,07 мм, и увидеть его можно только в микроскоп. Сперматозоид состоит из головки, тела и хвоста (жгутика). Благодаря наличию жгутика сперматозоиды способны самостоятельно передвигаться. Во время движения они обычно вращаются вокруг своей оси. В головке сперматозоида находятся хромосомы, которые содержат генетическую информацию, и акросомы - химический накопитель мужской половой клетки (ферменты, помогающие проникнуть в яйцеклетку). В теле сперматозоида находится энергетическая составляющая, которая обеспечивает сокращения жгутика.

В сперме, извергнутой во время полового акта, содержится примерно от 300 000 000 до 500 000 000 сперматозоидов. Однако достаточно всего 1 сперматозоида, чтобы произошло оплодотворение - процесс передачи генетического материала от отцовского организма в яйцеклетку.

А — Головка, шейка, хвост
Б — Митохондрия, микротрубочки, плазматическая мембрана

Ответственным за пол зародыша всегда бывает оплодотворяющий сперматозоид. Все сперматозоиды имеют набор из 23 хромосом, которые находятся в головке. Каждый сперматозоид несет в себе У или Х-хромосому, которые при оплодотворении яйцеклетки определяют пол будущего ребенка. Если яйцеклетку оплодотворяет сперматозоид, который несет в себе У-хромосому, то пол будущего ребенка будет мужским, а при наличии у сперматозоида Х-хромосомы - женским. Поскольку яйцеклетки содержат только Х-хромосомы, пол будущего ребенка зависит исключительно от мужчины.

Понятие «сперматозоид» необходимо отличать от понятия «сперма». Сперма (семенная жидкость), вырабатываемая мужскими половыми железами, состоит из сперматозоидов, жидкости семенных пузырьков, секрета предстательной железы и не¬большого количества эпителиальных клеток мочеиспускательного канала. Сперматозоиды составляют в среднем только 3 % семенной жидкости.

Цикл развития сперматозоида

Процесс развития сперматозоидов называется сперматогенез. Длительность развития сперматозоида от момента образования до полного его созревания составляет 2-2,5 месяца. Именно поэтому для зачатия здорового ребенка на протяжении данного временного периода рекомендуется воздерживаться от приема алкоголя, лекарств и токсичных веществ.

Изначально путем многочисленных делений в канальцах яичек мужская половая клетка, называемая на данном этапе сперматидой, получает определенный хромосомный набор. Для сперматозоидов очень важна подвижность, необходимая им, чтобы добраться до яйцеклетки и проникнуть внутрь. Этим свойством они наделяются при прохождении через придаток яичка. У сперматозоидов появляются хвост, моторный аппарат, головка и шапочка (акросома), в которой сконцентрированы ферменты для растворения на своем пути оболочек яйцеклетки. Так образуются полноценные сперматозоиды.

Далее они находятся в придатке яичка, пока не появится возможность оплодотворить яйцеклетку. Если сперматозоиды «засидятся» слишком долго, то состарятся и не смогут выполнить свою сакральную миссию. Самый оптимальный для оплодотворения состав сперма имеет при кратности половой жизни с интервалом в два дня.

Сперматозоид начинает движение в момент эякуляции (семяизвержения). До яйцеклетки еще далеко, и путь проходит через матку и основную часть маточной трубы. После капацитации (дозревания и подготовки сперматозоида к оплодотворению в женских половых путях) он сбрасывает акросомальную шапочку, чтобы определить яйцеклетку и растворить ее оболочки для по-падания внутрь. Пробив оболочку яйцеклетки, сперматозоид вводит внутрь головку и тело и теряет хвост. Если шапочка не сбрасывается, то оплодотворения не происходит.

Для оплодотворения вокруг яйцеклетки собирается множество сперматозоидов, но после того как один из них проник через оболочки, яйцеклетка блокируется. Поначалу блок возникает при помощи изменения электрического потенциала, а далее - за счет химических и структурных изменений. Вокруг яйцеклетки образуется новая оболочка, препятствующая оплодотворению ее другим спер-матозоидом.

Ядра сперматозоида и яйцеклетки, называемые теперь мужским и женским пронуклеусом, сближаются, сливаются и начинают активно делиться. Образуется зигота - оплодотворенная яйцеклетка, первая клетка нового организма. Через неделю эта зигота попадает в матку и в ее полости фиксируется к стенке: наступает беременность.

Чтобы продвинуться на 1 см, сперматозоид должен «вильнуть» хвостом не менее 800 раз

Образование сперматозоидов у чины начинается после достижения им половой зрелости и далее продолжается до самой смерти. Установлено, что даже после восьмидесяти лет у большинства мужчин в сперме присутствуют жизнеспособные сперматозоиды. Так, индийский фермер Рамджит Рагхава по-пал в Книгу рекордов Гиннесса, впервые став отцом в возрасте девяноста четырех лет.

Эти клетки значительно отличаются у мужчин и женщин. У мужчин половые клетки или сперматозоиды имеют хвостоподобные выросты () и являются относительно подвижными. Женские половые клетки, называемые яйцеклетками, не подвижны и намного больше относительно мужских гамет. Когда эти клетки сливаются в процессе, называемом оплодотворением, результирующая клетка (зигота) содержит смесь унаследованных от отца и матери. Половые человека производятся органами репродуктивной системы - гонадами. продуцируют половые гормоны, необходимые для роста и развития первичных и вторичных репродуктивных органов и структур.

Строение половых клеток человека

Мужские и женские половые клетки сильно отличаются друг от друга по размеру и форме. Мужские сперматозоиды напоминают длинные, подвижные снаряды. Это небольшие клетки, которые состоят из головки, средней и хвостовой частей. Головка содержит колпачковое покрытие, называемое акросомой. Акросома включает ферменты, которые помогают клетке спермы проникать в наружную оболочку яйцеклетки. расположено в головке сперматозоида. ДНК в ядре плотно упаковано и клетка не содержит много . Средняя часть включает несколько митохондрий, обеспечивающих энергию для . Хвостовая часть состоит из длинного выроста, называемого жгутиком, который помогает в клеточной локомоции.

Женские яйцеклетки являются одними из самых крупных клеток в организме и имеют округлую форму. Они вырабатываются в женских яичниках и состоят из ядра, большой цитоплазматической области, зоны пеллюциды (zona pellucida) и лучистого венца. Zona pellucida - это мембранное покрытие, которое окружает яйцеклетки. Она связывает клетки спермы и помогает в оплодотворении. Лучистый венец является внешним защитным слоем фолликулярных клеток, окружающий zona pellucida.

Образование половых клеток

Половые клетки человека продуцируются посредством двухэтапного процесса деления клеток, называемого . Через серию последовательных событий, реплицированный генетический материал в родительской клетке распределяется между четырьмя дочерними клетками. Поскольку эти клетки имеют половину числа от родительской клетки, они являются . Половые клетки человека содержат один набор из 23 хромосом.

Существуют два этапа мейоза: мейоз I и мейоз II. До мейоза хромосомы реплицируются и существуют в виде . В конце мейоза I образуется две . Сестринские хроматиды каждой хромосомы в дочерних клетках все еще связаны . В конце мейоза II образуются сестринские хроматиды и четыре дочерние клетки. Каждая клетка содержит половину хромосом от родительской клетки.

Мейоз подобен процессу деления неполовых клеток, известному как митоз. продуцирует две дочерние клетки, которые генетически идентичны и содержат такое же количество хромосом, как и родительская клетка. Эти клетки являются диплоидными, потому что включают два набора хромосом. Человеческие включают 23 пары или 46 хромосом. Когда половые клетки объединяются во время оплодотворения, гаплоидные клетки становятся диплоидной клеткой.

Производство сперматозоидов известно как сперматогенез. Этот процесс происходит непрерывно внутри мужских яичек. Сотни миллионов сперматозоидов должны быть выпущены, чтобы произошло . Подавляющее большинство сперматозоидов не доходят до яйцеклетки. При оогенезе или развитии яйцеклеток, дочерние клетки делятся неравномерно в мейозе. Такой асимметричный цитокинез приводит к образованию одной большой яйцеклетки (ооцита) и меньших клеток, называемых полярными телами, которые деградируют и не оплодотворяются. После мейоза I, яйцеклетка называется вторичным ооцитом. Вторичный ооцит завершит вторую стадию мейоза, если начнется процесс оплодотворения. Как только завершится мейоз II, клетка становится яйцеклеткой и может сливаться с клеткой спермы. Когда оплодотворение завершено, объединенная сперма и яйцеклетка становятся зиготой.

Половые хромосомы

Мужские сперматозоиды у человека и других млекопитающих являются гетерогаметическими и содержат один из двух типов половых хромосом: Х или Y. Однако женские яйцеклетки содержат только X-хромосому и поэтому гомогаметичны. Сперматозоид индивидуума. Если клетка спермы, содержащая Х-хромосому, оплодотворяет яйцеклетку, результирующая зигота будет XX или женский пол. Если клетка спермы содержит Y-хромосому, тогда результирующая зигота будет XY или мужской пол.

Половое размножение встречается у представителей всех типов растительного и животного мира. Оно связано с образованием особых половых клеток: женских - яйцеклеток и мужских - сперматозоидов.

Для половых клеток (гамет) характерно одинарное (гаплоидное) число хромосом (см. ). Кроме того, они отличаются соотношением объемов цитоплазмы и ядра (по сравнению с соматическими клетками).

Строение мужской половой клетки (сперматозоид)

Мужские половые клетки - сперматозоиды - обычно очень мелкие и подвижные. Типичные сперматозоиды состоят из головки, шейки и хвоста.

Головка почти целиком состоит из ядра, покрытого тонким слоем цитоплазмы. Самый передний ее участок заострен, покрыт колпачком.

Шейка сужена, в ней находятся центриоль (составная часть клеточного центра) и митохондрии.

Хвост сперматозоидов состоит из тончайших волокон, покрытых цитоплазматическим цилиндром: он является органоидом движения.

Общая длина сперматозоида, включая головку, шейку и хвост, у млекопитающих и человека составляет 50-60мкм. Характерно, что сперматозоиды образуются обычно в огромных количествах (у млекопитающих их в течение жизни созревает сотни миллионов).

Строение женской половой клетки (яйцеклетка)


Женские половые клетки (яйцеклетки) неподвижны и, как правило, крупнее сперматозоидов. Обычно они имеют шаровидную форму и разнообразное строение оболочек. У млекопитающих размеры яйцеклеток сравнительно небольшие и составляют 100-200мкм в диаметре. У других позвоночных (рыб, амфибий, рептилий, птиц) яйцеклетки крупные. В цитоплазме они содержат огромное количество питательных веществ.

У птиц, например, яйцеклеткой является та часть яйца, которая обычно называется желтком. Диаметр яйцеклетки курицы составляет 3-3,5см, а у таких крупных птиц, как страусы, - 10-11см. Эти яйцеклетки покрыты несколькими оболочками сложного строения (слой белка, подскорлуповая и скорлуповая оболочки и др.), которые обеспечивают нормальное развитие зародыша.

Количество образующихся яйцеклеток обычно значительно меньше, чем количество сперматозоидов. Например, у женщины в течение жизни созреет около 400 яйцеклеток.

Строение мужских и женских половых клеток растений описано .

Развитие яйцеклеток и сперматозоидов

Созревание и развитие половых клеток называется гаметогенезом. У животных и человека он происходит в половых железах: яйцеклетки развиваются в яичниках, а сперматозоиды - в яичках.

Стадии развития

Процессы развития мужских половых клеток (сперматогенез) и женских половых клеток (овогенез) имеют ряд сходных черт. И в яичнике, и в яичках различают три разных стадии:

  • Стадии размножения;
  • стадии роста;
  • стадии созревания половых клеток.

На первой стадии сперматогонии и овогонии (клетки - предшественники сперматозоидов и яйцеклеток) размножаются путем и число их увеличивается.

У мужчин митотическое деление сперматогоний начинается в период полового созревания и продолжается десятки лет. У женщин деление овогоний происходит только в эмбриональный период их жизни и заканчивается еще до рождения. У животных деление этих клеток зависит от сроков и периодов размножения.

Во второй стадии сперматогонии и овогонии перестают размножаться, начинают расти и увеличиваться в размерах, превращаясь в первичные сперматоциты и овоциты. Особенно значительно возрастают размеры у овоцитов. Например, у лягушек линейные размеры овоцита больше в 2 тыс. раз, чем у овогонии. Это связано с тем, что в них накапливаются питательные вещества, необходимые для развития зародыша.

Наиболее важные изменения происходят с будущими половыми клетками на третьей стадии созревания. Здесь проявляются и существенные отличия между спермато- и овогенезом. В этой зоне первичные овоциты дважды делятся путем мейоза. При первом мейотическом делении образуется крупный вторичный овоцит и мелкая клетка- первичный полоцит (первое полярное, или направительное, тельце).

При втором мейотическом делении вторичный овоцит делится на крупную незрелую яйцеклетку и мелкий вторичный полоцит (второе полярное тельце). Первичный полоцит тоже может разделиться еще на два полоцита.

Таким образом, в результате двух мейотических делений из одного первичного овоцита получается 4 клетки с гаплоидным набором хромосом - незрелая половая клетка (которая превращается в зрелую яйцеклетку) и три полоцита, которые в дальнейшем погибают.

При сперматогенезе первичный сперматоцит в зоне созревания тоже дважды делится путем мейоза. Но при этом возникают 4 одинаковых гаплоидных сперматиды. В дальнейшем они путем сложных преобразований (изменения формы, развития хвоста) превращаются в зрелые сперматозоиды.

Оплодотворение

Оплодотворение - это процесс слияния ядер сперматозоида и яйцеклетки и восстановление диплоидного набора хромосом. Оплодотворенная яйцеклетка носит название зиготы. Образование зиготы происходит только при проникновении сперматозоида в яйцеклетку.


Этот процесс у разных организмов осуществляется неодинаково. У млекопитающих проникновение сперматозоида в яйцеклетку сопровождается растворением ее оболочки при помощи различных ферментов, выделяемых сперматозоидом. У многих насекомых яйцеклетки имеют плотную оболочку, и сперматозоид проникает через небольшие отверстия. У некоторых водных организмов на поверхности яйцеклетки образуется в месте контакта со сперматозоидом небольшой воспринимающий бугорок, который затем втягивается внутрь вместе со сперматозоидом.

Обычно в цитоплазму яйцеклетки проникает только головка сперматозоида с митохондрией и центриолью, а хвост остается снаружи. Оболочка головки растворяется, ядро начинает набухать, пока не достигнет размеров ядра яйцеклетки. Затем оба ядра сближаются и, наконец, сливаются.

Иногда в яйцеклетку одновременно проникает несколько сперматозоидов, но слияние с ядром происходит только у одного из них. В зиготе все хромосомы становятся парными: в каждой паре гомологичных хромосом одна хромосома принадлежит яйцеклетке, вторая - сперматозоиду. Это явление имеет большое значение для эволюции. Организм, развивающийся из зиготы, обладает большим диапазоном комбинативной изменчивости, следовательно и более широкими возможностями приспособления к меняющимся условиям внешней среды.

Характерно для цветковых растений.

Подавляющее большинство многоклеточных организмов размножается половым путем. У многоклеточных организмов главную роль в этом процессе играют половые клетки с гаплоидным набором хромосом — гаметы . При половом размножении происходит слияние яйцеклетки — женской половой клетки и сперматозоида (или спермия у голосеменных и покрытосеменных растений) — мужской половой клетки, благодаря чему дочерние организмы получают генетическую информацию от обоих родителей.
В природе можно встретить разнообразные типы гамет. У ряда организмов гаметы подвижные, одинаковые по форме, размерам. Есть виды, у которых подвижные гаметы различаются по размерам. У более высокоорганизованных видов гаметы различаются по размерам и подвижности: у млекопитающих, например, мужские гаметы мелкие и подвижные, а женские — крупные и неподвижные. У высших семенных растений и мужские, и женские гаметы неподвижны.
Познакомимся со строением половых клеток. Сперматозоид состоит из головки, шейки и длинного жгутика. В головке находится ядро с гаплоидным набором хромосом. В шейке размещаются , осуществляющие синтез молекул АТФ — источника энергии для движения жгутика, с помощью которого сперматозоид передвигается.
По сравнению с другими клетками организма яйцеклетки — крупные клетки. Они содержат большое ядро с ядрышками, много цитоплазмы с многочисленными органоидами. В цитоплазме яйцеклеток находится большое количество питательных веществ — белков, жиров, углеводов. Эти вещества обеспечивают питание зародыша на ранних стадиях развития. В ядре яйцеклетки содержится гаплоидный набор хромосом.

* Величина яйцеклеток у разных организмов варьирует от нескольких десятков микрометров до нескольких сантиметров в диаметре. Число яйцеклеток у разных организмов также различно. У птиц, которые заботятся о потомстве, число яйцеклеток невелико, а у рыб число икринок достигает нескольких сотен и тысяч. Треска, например, мечет до 9 млн икринок. У живородящих рыб, заботящихся о потомстве, образуется всего от 100 до 300 икринок.

Некоторые яйцеклетки покрыты оболочками. Особенно массивны оболочки яйцеклеток у организмов с наружным оплодотворением, например у большинства птиц.
Большинство видов животных раздельнополы, то есть яйцеклетки у них образуются в женском, а сперматозоиды — в мужском организме. У некоторых видов одна и та же особь производит и мужские, и женские гаметы. К организмам, образующим и женские, и мужские клетки, относятся некоторые простейшие, кишечнополостные, плоские черви, кольчатые черви (например, дождевой червь), многие растения.

Одним из первых этапов разделения труда между клетками в организме, практически совпавшим с возникновением самих многоклеточных организмов , было разделение на соматические и половые клетки. С тех пор, эволюционируя, многоклеточные организмы поделились на две группы: на тех, кто создает половые клетки из соматических по мере необходимости, и тех, кто уже на ранних этапах эмбрионального развития выделяет и на некоторое время «консервирует» отдельную популяцию клеток – предшественников половых клеток.


© jessy731/Flickr

У человека, например, первичные половые клетки образуются на пятой неделе эмбрионального развития в желточном мешке. В это время зачатки гонад – яичников и семенников — еще даже не сформировались, но, когда они сформируются, первичные половые клетки мигрируют туда и там и останутся. Похожим образом первичные половые клетки выделяются почти у всех животных сложнее кишечнополостных. У некоторых видов насекомых судьба половых клеток определяется экстремально рано: уже в неоплодотворенной яйцеклетке у одного из полюсов находятся белковые гранулы, и именно из части цитоплазмы с гранулами после дробления образуются первичные половые клетки.

У всех растений и примитивных животных, раньше других ответвившихся от общего эволюционного ствола, (губок, гребневиков, медуз, оболочников, плоских червей и т.п.) никаких изначально назначенных половых клеток нет. Они образуются из соматических стволовых клеток, живущих в соматических тканях только тогда, когда организм решает приступить к размножению.

До сих пор не было выдвинуто ни одной теории, которая бы успешно объяснила, зачем понадобилось раннее «консервирование» половых клеток.

Одно из предлагаемых объяснений заключается в заботе о сохранности генетического материала. Действительно, при каждом делении клетки происходит удвоение хромосом, и при копировании происходят ошибки. Количество таких ошибок при одном копировании невелико, но, чем больше копий, тем больше ошибок. В метаболически активных клетках из-за окислительно-восстановительных реакций, необходимых для выработки энергии (синтеза АТФ), более агрессивная окружающая среда, выше концентрация свободных радикалов. Под их воздействием в ДНК могут появляться новые мутации, даже если в данный момент не происходит копирование.

Предел Хейфлика и теломеры

Неточности при репликации и активный метаболизм способствуют накоплению мутаций в геноме клетки. Накопление мутаций может приводить к злокачественному перерождению клетки, и тогда погибнет уже не одна клетка, а весь организм. Для защиты от такого эгоистического поведения существует ограничение, наложенное на соматические клетки многоклеточных организмов – предел Хейфлика – максимальное число делений, которые может осуществить клетка. Для клеток человека предел Хейфлика равен 52. Технически предел Хейфлика возникает за счет теломер – последовательностей на концах хромосом. При удвоении хромосом полимераза из-за своей пространственной структуры не может начать действовать с самого конца хромосомы, и транскрипт каждый раз выходит все короче и короче. Пока укорочение затрагивает только последовательности теломер, клетка живет. Как только теломеры кончаются, геном становится нестабилен и клетка погибает. Побочным эффектом таких репликативных ограничений, по-видимому, является старение организма. На клетки половой линии предел Хейфлика не распространяется – потенциально они бессмертны и переходят из поколения в поколение, перетасовывая генетический материал. Такое своеобразное бессмертие достигается за счет активности теломеразы – фермента, удлиняющего теломеры. Правда, при этом сразу повышается цена возникшей негативной мутации. Если клетка с мутацией примет участие в процессе оплодотворения, то мутацию унаследуют все клетки нового организма. Такой организм может оказаться менее приспособленным или даже больным и быстро погибнуть.

Однако, против консервации половой линии ради бережного отношения к ядерной ДНК есть серьезный аргумент. Он заключается в том, что с той точки зрения консервируются только женские половые клетки. Мужские половые клетки очень активно делятся и у человека проходят около 30 делений к моменту полового созревания и около 400 (!) – к 30 годам. С этой точки зрения мужские половые клетки-предшественники ведут себя как соматическая ткань – особенно велико сходство с костным мозгом, в котором небольшое количество стволовых клеток все время интенсивно делится, чтобы обеспечивать организм короткоживущими форменными элементами крови. Из-за такого интенсивного деления предшественников сперматозоидов ДНК потомства содержит уже достаточно большое количество мутаций по сравнению с отцовской.



© Darryl Leja/National Human Genome Research Institute

Предположить другую, более вероятную причину появления консервации клеток половой линии помогает сравнение роли сперматозоида и яйцеклетки при оплодотворении. В момент оплодотворения из сперматозоида в яйцеклетку попадает только ядро, цитоплазма и все органеллы достаются будущему эмбриону от яйцеклетки. В частности, все митохондрии нового организма унаследованы им от матери. Митохондрии занимаются в клетке выработкой энергии. Будучи исторически бактериями, вступившими в симбиоз с эукариотами, они сохраняют остатки собственного генома. Митохондриальный геном больше похож на бактериальный, чем на эукариотический. Он представлен одной кольцевой хромосомой, и не вступает в гомологическую рекомбинацию. Митохондрии делятся как обычные бактерии, при этом двум дочерним митохондриям достаются идентичные с точностью до только что появившихся мутаций хромосомы. Это значит, что неудачная мутация, возникшая в митохондриальной ДНК, может быть элиминирована, только если ни одна неудачная митохондрия не попадет в клетки половой линии следующего поколения (маловероятно, если неудачная митохондрия успела неудачно размножиться) или если организм не оставит потомства вовсе. По всему выходит, что цена такой мутации выше.

Однако, кроме вредных мутаций, есть еще и полезные. Без них эволюция была бы вообще невозможна, потому что во-первых, все были бы одинаковы, а, во-вторых, вообще бы не пережили резкой смены условий. Поэтому число мутаций должно находиться на определенном отрезке: не быть ни слишком большим, ни слишком маленьким.

Предположения о том, что изоляция клеток половой линии нужна для бережного хранения митохондрий яйцеклеток, была выдвинута уже довольно давно. Но, разумеется, провести эксперимент в масштабах эволюции от общего предка всех эукариот до хотя бы кольчатых червей совершенно невозможно. Поэтому Ник Лэйн из Университетского колледжа в Лондоне и его коллеги воспользовались математической моделью для того, чтобы подтвердить или опровергнуть эту гипотезу. Их работа опубликована в электронном научном журнале PLOS Biology.

В разное время в разных экспериментах была оценена скорость возникновения новых мутаций в митохондриальной ДНК разных видов. Оказалось, что она довольно низкая для растений и примитивных животных, но гораздо более высокая у более сложных животных, в том числе, у млекопитающих. Причины этого не вполне понятны. Было выдвинуто предположение, что переход к подвижному образу жизни и охоте выдвинул более жесткие требования к энергообеспечению клеток, и для получения более эффективных митохондрий частоту возникновения мутаций пришлось повысить.

Хорошо, однако, заметна корреляция между частотой возникновения мутаций в митохондриальной ДНК и консервацией женских половых клеток. Авторы работы построили математическую модель, оценивающую приспособленность организма в зависимости от частоты возникновения мутаций в митохондриальной ДНК. Оказалось, что при высокой частоте, свойственной, например, человеку, без консервации женских половых клеток мутации в митохондриях накапливались бы слишком быстро.

В целом, эта математическая модель довольно убедительно отвечает на вопрос, зачем вообще понадобилось консервировать клетки половой линии. Но, будучи математической моделью, она обладает тем недостатком, что опирается только на уже полученные к текущему моменту экспериментальные данные о частоте мутаций при репликации митохондриальной ДНК у разных видов. Если завтра в новых экспериментах найдут растение с высокой частотой мутаций или какое-нибудь позвоночное с низкой, теорию придется пересмотреть или существенно дополнить.

Авторы работы предполагают также, что их теория объясняет необъясненное пока явление атрезии фолликулов. В ходе эмбрионального развития женского организма человека (аналогично это устроено и у многих других животных) образуется около 6 миллионов оогоний (предшественников ооцитов). Потом более 90% их самопроизвольно погибает, и к пубертату их остается около 500 тысяч. Сложно себе представить, что это происходит из-за низкого качества клеток. Авторы работы предположили, что это явление появилось, чтобы исправить слишком маленькую вариативность в митохондриальной ДНК, которая возникла из-за консервации клеток половой линии. По их предположению, клетки сначала несколько раз делятся, чтобы получить больше разных вариантов митохондриальной ДНК, а потом часть из них гибнет так, чтобы в живых остались клетки с максимально непохожими вариантами.

Такая вариативность очень важна, именно она является материалом для эволюции и отбора наиболее выгодных вариантов. Соревнование между разными вариантами ооцитов начинается очень рано. В каждом цикле у человека начинает созревать несколько фолликулов, но один из них вырывается вперед, и тогда остальные, как правило, гибнут (именно этим объясняется сравнительно низкая частота рождения разнояйцевых близнецов у человека). Возможно, что решающем преимуществом в этом соревновании как раз и является эффективность работы митохондрий.

Авторы работы вполне согласны с тем, что их предположение – всего лишь гипотеза, что она не может быть подтверждена экспериментальными данными, зато может быть такими данными опровергнута. Однако она довольно непротиворечиво объясняет явление, которое ученые пытались объяснить с самого начала – консервацию клеток половой линии (преимущественно, в женском организме). Кроме того, попутно эта гипотеза объясняет и другие не объясненные ранее явления – например, избыточной производство и массовую гибель предшественников яйцеклеток.



Понравилась статья? Поделитесь с друзьями!