Как генератор вырабатывает электричество. Почему автомобильные генераторы вырабатывают переменный ток? Каким образом электрический ток доходит до наших домов

Генератор тока преобразует механическую (кинетическую) энергию в электроэнергию. В энергетике пользуются только вращающимися электромашинными генераторами, основанными на возникновении электродвижущей силы (ЭДС) в проводнике, на который каким-либо образом действует изменяющееся магнитное поле. Ту часть генератора, которая предназначена для создания магнитного поля, называют индуктором, а часть, в которой индуцируется ЭДС – якорем.

Вращающуюся часть машины называют ротором , а неподвижную часть – статором . В синхронных машинах переменного тока индуктором обычно является ротор, а в машинах постоянного тока – статор. В обоих случаях индуктор представляет собой обычно двух- или многополюсную электромагнитную систему, снабженную обмоткой возбуждения, питаемой постоянным током (током возбуждения), но встречаются и индукторы, состоящие из системы постоянных магнитов. В индукционных (асинхронных) генераторах переменного тока индуктор и якорь не могут четко (конструктивно) различаться друг от друга (можно сказать, что статор и ротор одновременно являются и индуктором и якорем).

Более 95 % электроэнергии на электростанциях мира производится при помощи синхронных генераторов переменного тока . При помощи вращающегося индуктора в этих генераторах создается вращающееся магнитное поле, наводящее в статорной (обычно трехфазной) обмотке переменную ЭДС, частота которой точно соответствует частоте вращения ротора (находится в синхронизме с частотой вращения индуктора). Если индуктор, например, имеет два полюса и вращается с частотой 3000 r/min (50 r/s), то в каждой фазе статорной обмотки индуцируется переменная ЭДС частотой 50 Hz. Конструктивное исполнение такого генератора упрощенно изображено на рис. 1.

Рис. 1. Принцип устройства двухполюсного синхронного генератора. 1 статор (якорь), 2 ротор (индуктор), 3 вал, 4 корпус. U-X, V-Y, W-Z – размещенные в пазах статора части обмоток трех фаз

Магнитная система статора представляет собой спрессованный пакет тонких стальных листов, в пазах которого располагается статорная обмотка. Обмотка состоит из трех фаз, сдвинутых в случае двухполюсной машины друг относительно друга на 1/3 периметра статора; в фазных обмотках индуцируются, следовательно, ЭДС, сдвинутые друг относительно друга на 120o. Обмотка каждой фазы, в свою очередь, состоит из многовитковых катушек, соединенных между собой последовательно или параллельно. Один из наиболее простых вариантов конструктивного исполнения такой трехфазной обмотки двухполюсного генератора упрощенно представлен на рис. 2 (обычно число катушек в каждой фазе больше, чем показано на этом рисунке). Те части катушек, которые находятся вне пазов, на лобовой поверхности статора, называются лобовыми соединениями.

Рис. 2. Простейший принцип устройства статорной обмотки трехфазного двухполюсного синхронного генератора в случае двух катушек в каждой фазе. 1 развертка поверхности магнитной системы статора, 2 катушки обмотки, U, V, W начала фазных обмоток, X, Y, Z концы фазных обмоток

Полюсов индуктора и, в соответствии с этим, полюсных делений статора, может быть и больше двух. Чем медленнее вращается ротор, тем больше должно быть при заданной частоте тока число полюсов. Если, например, ротор вращается с частотой 300 r/min, то число полюсов генератора, для получения частоты переменного тока 50 Hz, должно быть 20. Например, на одной из крупнейших гидроэлектростанций мира, ГЭС Итайпу (Itaipu, см. рис. 4) генераторы, работающие на частоте 50 Hz, исполнены 66-полюсными, а генераторы, работающие на частоте 60 Hz – 78-полюсными.

Обмотка возбуждения двух- или четырехполюсного генератора размещается, как показано на рис. 1, в пазах массивного стального сердечника ротора. Такая конструкция ротора необходима в случае быстроходных генераторов, работающих при частоте вращения в 3000 или 1500 r/min (особенно для турбогенераторов, предназначенных для соединения с паровыми турбинами), так как при такой скорости на обмотку ротора действуют большие центробежные силы. При большем числе полюсов каждый полюс имеет отдельную обмотку возбуждения (рис. 3.12.3). Такой явнополюсный принцип устройства применяется, в частности, в случае тихоходных генераторов, предназначенных для соединения с гидротурбинами (гидрогенераторов), работающих обычно при частоте вращения от 60 r/min до 600 r/min.

Очень часто такие генераторы, в соответствии с конструктивным исполнением мощных гидротурбин, выполняются с вертикальным валом.

Рис. 3. Принцип устройства ротора тихоходного синхронного генератора. 1 полюс, 2 обмотка возбуждения, 3 колесо крепления, 4 вал

Обмотку возбуждения синхронного генератора обычно питают постоянным током от внешнего источника через контактные кольца на валу ротора. Раньше для этого предусматривался специальный генератор постоянного тока (возбудитель), жестко связанный с валом генератора, а в настоящее время используются более простые и дешевые полупроводниковые выпрямители. Встречаются и системы возбуждения, встроенные в ротор, в которых ЭДС индуцируется статорной обмоткой. Если для создания магнитного поля вместо электромагнитной системы использовать постоянные магниты, то источник тока возбуждения отпадает и генератор становится значительно проще и надежнее, но в то же время и дороже. Поэтому постоянные магниты применяются обычно в относительно маломощных генераторах (мощностью до нескольких сотен киловатт).

Конструкция турбогенераторов, благодаря цилиндрическому ротору относительно малого диаметра, очень компактна. Их удельная масса составляет обычно 0,5…1 kg/kW, и их номинальная мощность можеь достигать 1600 MW. Устройство гидрогенераторов несколько сложнее, диаметр ротора велик и удельная масса их поэтому обычно 3,5…6 kg/kW. До настоящего времени они изготовлялись номинальной мощностью до 800 MW.

При работе генератора в нем возникают потери энергии, вызванные активным сопротивлением обмоток (потери в меди), вихревыми токами и гистерезисом в активных частях магнитной системы (потери в стали) и трением в подшипниках вращающихся частей (потери на трение). Несмотря на то, что суммарные потери обычно не превышают 1…2 % мощности генератора, отвод тепла, освобождающегося в результате потерь, может оказаться затруднительным. Если упрощенно считать, что масса генератора пропорциональна его мощности, то его линейные размеры пропорциональны кубическому корню мощности, а поверхностные размеры – мощности в степени 2/3. С увеличением мощности, следовательно, поверхность теплоотвода растет медленнее, чем номинальная мощность генератора. Если при мощностях порядка нескольких сотен киловатт достаточно применять естественное охлаждение, то при бoльших мощностях необходимо перейти на принудительную вентиляцию и, начиная приблизительно со 100 MW, использовать вместо воздуха водород. При еще больших мощностях (например, более 500 MW) необходимо дополнить водородное охлаждение водным. У крупных генераторах надо специально охлаждать и подшипники, обычно используя для этого циркуляцию масла.

Тепловыделение генератора можно значительно уменьшить путем применения сверхпроводящих обмоток возбуждения. Первый такой генератор (мощностью 4 MVA), предназначенный для применения на судах, изготовила в 2005 году немецкая электротехническая фирма Сименс (Siemens AG) . Номинальное напряжение синхронных генераторов, в зависимости от мощности, находится обычно в пределах от 400 V до 24 kV. Использовались и более высокие номинальные напряжения (до 150 kV), но чрезвычайно редко. Кроме синхронных генераторов сетевой частоты (50 Hz или 60 Hz) выпускаются и высокочастотные генераторы (до 30 kHz) и генераторы пониженной частоты (16,67 Hz или 25 Hz), используемые на электрифицированных железных дорогах некоторых европейских стран. К синхронным генераторам относится, в принципе, и синхронный компенсатор, представляющий собой синхронный двигатель, работающий на холостом ходу и отдающий в высоковольтную распределительную сеть реактивную мощность. При помощи такой машины можно покрыть потребление реактивной мощности местных промышленных электропотребителей и освободить основную сеть энергосистемы от передачи реактивной мощности.

Кроме синхронных генераторов относительно редко и при относительно малых мощностях (до нескольких мегаватт) могут использоваться и асинхронные генераторы . В обмотке ротора такого генератора ток индуцируется магнитным полем статора, если ротор вращается быстрее, чем статорное вращающееся магнитное поле сетевой частоты. Необходимость в таких генераторах возникает обычно тогда, когда невозможно обеспечить неизменную скорость вращения первичного двигателя (например, ветряной турбины, некоторых малых гидротурбин и т. п.).

У генератора постоянного тока магнитные полюсы вместе с обмоткой возбуждения располагаются обычно в статоре, а обмотка якоря – в роторе. Так как в обмотке ротора при его вращении индуцируется переменная ЭДС, то якорь необходимо снабжать коллектором (коммутатором), при помощи которого на выходе генератора (на щетках коллектора) получают постоянную ЭДС. В настоящее время генераторы постоянного тока применяются редко, так как постоянный ток проще получать при помощи полупроводниковых выпрямителей.

К электромашинным генераторам относятся и электростатические генераторы , на вращающейся части которых путем трения (трибоэлектрически) создается электрический заряд высокого напряжения. Первый такой генератор (вращаемый вручную серный шар, который электризовался при трении об руку человека) изготовил в 1663 году мэр города Магдебурга (Magdeburg, Германия) Отто фон Гюрике (Otto von Guericke, 1602–1686). В ходе своего развития такие генераторы позволяли открывать многие электрические явления и закономерности. Они и сейчас не потеряли своего значения как средств проведения экспериментальных исследований по физике.

Первый изготовил 4 ноября 1831 года профессор Лондонского Королевского института (Royal Institution) Майкл Фарадей (Michael Faraday, 1791–1867). Генератор состоял из подковообразного постоянного магнита и медного диска, вращающегося между магнитными полюсами (рис. 3.12.4). При вращении диска между его осью и краем индуцировалась постоянная ЭДС. По такому же принципу устроены более совершенные униполярные генераторы, находящие применение (хотя относительно редко) и в настоящее время.

Рис. 4. Принцип устройства униполярного генератора Майкла Фарадея. 1 магнит, 2 вращающийся медный диск, 3 щетки. Рукоятка диска не показана

Майкл Фарадей родился в бедной семье и после начальной школы, в возрасте 13 лет, поступил учеником переплетчика книг. По книгам он самостоятельно продолжал свое образование, а по Британской энциклопедии ознакомился с электричеством, изготовил электростатический генератор и лейденскую банку. Для расширения своих знаний он начал посещать публичные лекции по химии директора Королевского института Гемфри Дэви (Humphrey Davy, 1778–1829), а в 1813 году получил должность его ассистента. В 1821 году он стал главным инспектором этого института, в 1824 году – членом Королевского общества (Royal Society) и в 1827 году – профессором химии Королевского института. В 1821 году он начал свои знаменитые опыты по электричеству, в ходе которых предложил принцип действия электродвигателя, открыл явление электромагнитной индукции, принцип устройства магнитоэлектрического генератора, закономерности электролиза и много других основополагающих физических явлений. Спустя год после вышеописанного опыта Фарадея, 3 сентября 1832 года, парижский механик Ипполит Пикси (Hippolyte Pixii, 1808–1835) изготовил по заказу и под руководством основоположника электродинамики Андре Мари Ампера (Andre Marie Ampere, 1775–1836) генератор с вращаемым вручную, как у Фарадея, магнитом (рис. 5). В якорной обмотке генератора Пикси индуцируется переменная ЭДС. Для выпрямления получаемого тока к генератору вначале пристроили открытый ртутный коммутатор, переключающий полярность ЭДС при каждом полуобороте ротора, но вскоре он был заменен более простым и безопасным цилиндрическим щеточным коллектором, изображенным на рис. 5.

Рис. 5. Принцип устройства магнитоэлектрического генератора Ипполита Пикси (a), график индуцируемой ЭДС (b) и график получаемой при помощи коллектора пульсирующей постоянной ЭДС (c). Рукоятка и конусная зубчатая передача не показаны

Генератор, построенный по принципу Пикси, впервые применил в 1842 году на своем заводе в Бирмингеме (Birmingham) для электропитания гальванических ванн английский промышленник Джон Стивен Вульрич (John Stephen Woolrich, 1790–1843), использовав в качестве приводного двигателя паровую машину мощностью 1 л. с. Напряжение его генератора составляло 3 V, номинальный ток – 25 A и кпд – около 10 %. Такие же, но более мощные генераторы быстро начали внедряться и на других гальванических предприятиях Европы. В 1851 году немецкий военный врач Вильгельм Йозеф Зинштеден (Wilhelm Josef Sinsteden, 1803–1891) предложил использовать в индукторе вместо постоянных магнитов электромагниты и питать их током от меньшего вспомогательного генератора; он же обнаружил, что кпд генератора увеличится, если стальной сердечник электромагнита изготовить не массивным, а из параллельных проволок. Однако идеи Зинштедена стал реально использовать только в 1863 году английский электротехник-самоучка Генри Уайльд (Henry Wilde, 1833–1919), который предложил, среди прочих нововведении, насадить машину-возбудитель (англ. exitatrice) на вал генератора. В 1865 году он изготовил генератор невиданной доселе мощности в 1 kW, при помощи которого он мог демонстрировать даже плавку и сварку металлов.

Важнейшим усовершенствованием генераторов постоянного тока стало их самовозбуждение , принцип которого запатентовал в 1854 году главный инженер государственных железных дорог Дании Сёрен Хьёрт (Soren Hjorth, 1801–1870), но не нашедшее в то время практического применения. В 1866 году этот принцип снова открыли независимо друг от друга несколько электротехников, в том числе уже упомянутый Г. Уайльд, но широко известным он стал в декабре 1866 года, когда немецкий промышленник Эрнст Вернер фон Сименс (Ernst Werner von Siemens, 1816–1892) применил его в своем компактном и высокоэффективном генераторе. 17 января 1867 года в Берлинской академии наук был прочитан его знаменитый доклад о динамоэлектрическом принципе (о самовозбуждении). Самовозбуждение позволило отказатьса от вспомогательных генераторов возбуждения (от возбудителей), что обусловило возможность выработки намного более дешевой электроэнергии в больших количествах. По этой причине год 1866 часто считают годом зарождения электротехники сильного тока. В первых самовозбуждающихся генераторах обмотку возбуждения включали, как у Сименса, последовательно (сериесно) с якорной обмоткой, но в феврале 1867 года английский электротехник Чарлз Уитстон (Charles Wheatstone, 1802–1875) предложил параллельное возбуждение, позволяющее лучше регулировать ЭДС генератора, к которому он пришел еще до сообщений о последовательном возбуждении, открытом Сименсом (рис. 6).

Рис. 6. Развитие систем возбуждения генераторов постоянного тока. a возбуждение при помощи постоянных магнитов (1831), b внешнее возбуждение (1851), c последовательное самовозбуждение (1866), d параллельное самовозбуждение (1867). 1 якорь, 2 обмотка возбуждения. Регулировочные реостаты тока возбуждения не показаны

Необходимость в генераторах переменного тока возникла в 1876 году, когда работающий в Париже русский электротехник Павел Яблочков (1847–1894) стал освещать городские улицы при помощи изготовляемых им дуговых ламп переменного тока (свечей Яблочкова). Первые необходимые для этого генераторы создал парижский изобретатель и промышленник Зеноб Теофиль Грамм (Zenobe Theophile Gramme, 1826–1901). С началом массового производства ламп накаливания в 1879 году переменный ток на некоторое время потерял свое значение, но снова обрел актуальность в связи с ростом дальности передачи электроэнергии в середине 1880-х годов. В 1888–1890 годах владелец собственной научно-исследовательской лаборатории Тесла-Электрик (Tesla-Electric Co., Нью-Йорк, США) эмигрировавший в США сербский электротехник Никола Тесла (Nikola Tesla, 1856–1943) и главный инженер фирмы АЭГ (AEG, Allgemeine Elektricitats-Gesellschaft) эмигрировавший в Германию русский электротехник Михаил Доливо-Добровольский (1862–1919) разработали трехфазную систему переменного тока. В результате началось производство все более мощных синхронных генераторов для сооружаемых тепло- и гидроэлектростанций.

Важным этапом в развитии турбогенераторов может считаться разработка в 1898 году цилиндрического ротора совладельцем швейцарского электротехнического завода Браун, Бовери и компания (Brown, Boveri & Cie., BBC) Чарлзом Эженом Ланселотом Брауном (Charles Eugen Lancelot Brown, 1863–1924). Первый генератор с водородным охлаждением (мощностью 25 MW) выпустила в 1937 году американская фирма Дженерал Электрик (General Electric), а с внутрипроводным водяным охлаждением – в 1956 году английская фирма Метрополитен Виккерс (Metropolitan Vickers).

Для решения проблемы ограниченности ископаемых видов топлива исследователи во всем мире работают над созданием и внедрением в эксплуатацию альтернативных источников энергии. И речь идет не только о всем известных ветряках и солнечных батареях. На смену газу и нефти может прийти энергия от водорослей, вулканов и человеческих шагов. Recycle выбрал десять самых интересных и экологически чистых энерго-источников будущего.


Джоули из турникетов

Тысячи людей каждый день проходят через турникеты при входе на железнодорожные станции. Сразу в нескольких исследовательских центрах мира появилась идея использовать поток людей в качестве инновационного генератора энергии. Японская компания East Japan Railway Company решила оснастить каждый турникет на железнодорожных станциях генераторами. Установка работает на вокзале в токийском районе Сибуя: в пол под турникетами встроены пьезоэлементы, которые производят электричество от давления и вибрации, которую они получают, когда люди наступают на них.

Другая технология «энерго-турникетов» уже используется в Китае и в Нидерландах. В этих странах инженеры решили использовать не эффект нажатия на пьезоэлементы, а эффект толкания ручек турникета или дверей-турникетов. Концепция голландской компании Boon Edam предполагает замену стандартных дверец при входе в торговые центры (которые обычно работают по системе фотоэлемента и сами начинают крутиться) на двери, которые посетитель должен толкать и таким образом производить электроэнергию.

В голландском центре Natuurcafe La Port такие двери-генераторы уже появились. Каждая из них производит около 4600 киловатт-час энергии в год, что на первый взгляд может показаться незначительным, но служит неплохим примером альтернативной технологии по выработке электричества.


Водоросли отапливают дома

Водоросли стали рассматриваться в качестве альтернативного источника энергии относительно недавно, но технология, по мнению экспертов, очень перспективна. Достаточно сказать, что с 1 гектара площади водной поверхности, занятой водорослями, в год можно получать 150 тысяч кубометров биогаза. Это приблизительно равно объёму газа, который выдает небольшая скважина, и достаточно для жизнедеятельности небольшого поселка.

Зеленые водоросли просты в содержании, быстро растут и представлены множеством видов, использующих энергию солнечного света для осуществления фотосинтеза. Всю биомассу, будь то сахара или жиры, можно превратить в биотопливо, чаще всего в биоэтанол и биодизельное топливо. Водоросли — идеальное эко-топливо, потому что растут в водной среде и не требуют земельных ресурсов, обладают высокой продуктивностью и не наносят ущерба окружающей среде.

По оценкам экономистов, к 2018 году глобальный оборот от переработки биомассы морских микроводорослей может составить около 100 млрд долларов. Уже существуют реализованные проекты на «водорослевом» топливе — например, 15-квартирный дом в немецком Гамбурге. Фасады дома покрыты 129 аквариумами с водорослями, служащими единственным источником энергии для отопления и кондиционирования здания, получившего название Bio Intelligent Quotient (BIQ) House.


«Лежачие полицейские» освещают улицы

Концепцию выработки электроэнергии при помощи так называемых «лежачих полицейских» начали реализовывать сначала в Великобритании, затем в Бахрейне, а скоро технология дойдет и до России. Все началось с того, что британский изобретатель Питер Хьюс создал «Генерирующую дорожную рампу» (Electro-Kinetic Road Ramp) для автомобильных дорог. Рампа представляет собой две металлические пластины, немного поднимающиеся над дорогой. Под пластинами заложен электрический генератор, который вырабатывает ток всякий раз, когда автомобиль проезжает через рампу.

В зависимости от веса машины рампа может вырабатывать от 5 до 50 киловатт в течение времени, пока автомобиль проезжает рампу. Такие рампы в качестве аккумуляторов способны питать электричеством светофоры и подсвечиваемые дорожные знаки. В Великобритании технология работает уже в нескольких городах. Способ начал распространяться и на другие страны — например, на маленький Бахрейн.

Самое удивительное, что нечто подобное можно будет увидеть и в России. Студент из Тюмени Альберт Бранд предложил такое же решение по уличному освещению на форуме «ВУЗПромЭкспо». По подсчетам разработчика, в день по «лежачим полицейским» в его городе проезжает от 1000 до 1500 машин. За один «наезд» автомобиля по оборудованному электрогенеретором «лежачему полицейскому» будет вырабатываться около 20 ватт электроэнергии, не наносящей вред окружающей среде.


Больше, чем просто футбол

Разработанный группой выпускников Гарварда, основателей компании Uncharted Play, мяч Soccket может за полчаса игры в футбол сгенерировать электроэнергию, которой будет достаточно, чтобы несколько часов подпитывать LED-лампу. Soccket называют экологически чистой альтернативой небезопасным источникам энергии, которые нередко используются жителями малоразвитых стран.

Принцип аккумулирования энергии мячом Soccket довольно прост: кинетическая энергия, образуемая от удара по мячу, передается крошечному механизму, похожему на маятник, который приводит в движение генератор. Генератор производит электроэнергию, которая накапливается в аккумуляторе. Сохраненная энергия может быть использована для питания любого небольшого электроприбора — например, настольной лампы со светодиодом.

Выходная мощность Soccket составляет шесть ватт. Генерирующий энергию мяч уже завоевал признание мирового сообщества: получил множество наград, был высоко оценен организацией Clinton Global Initiative, а также получил хвалебные отзывы на известной конференции TED.


Скрытая энергия вулканов

Одна из главных разработок в освоении вулканической энергии принадлежит американским исследователям из компаний-инициаторов AltaRock Energy и Davenport Newberry Holdings. «Испытуемым» стал спящий вулкан в штате Орегон. Соленая вода закачивается глубоко в горные породы, температура которых благодаря распаду имеющихся в коре планеты радиоактивных элементов и самой горячей мантии Земли очень высока. При нагреве вода превращается в пар, который подается в турбину, вырабатывающую электроэнергию.

На данный момент существуют лишь две небольшие действующие электростанции подобного типа - во Франции и в Германии. Если американская технология заработает, то, по оценке Геологической службы США, геотермальная энергия потенциально способна обеспечить 50% необходимого стране электричества (сегодня ее вклад составляет лишь 0,3%).

Другой способ использования вулканов для получения энергии предложили в 2009 году исландские исследователи. Рядом с вулканическими недрами они обнаружили подземный резервуар воды с аномально высокой температурой. Супер-горячая вода находится где-то на границе между жидкостью и газом и существует только при определенных температуре и давлении.

Ученые могли генерировать нечто подобное в лаборатории, но оказалось, что такая вода встречается и в природе — в недрах земли. Считается, что из воды «критической температуры» можно извлечь в десять раз больше энергии, чем из воды, доведенной до кипения классическим образом.


Энергия из тепла человека

Принцип термоэлектрических генераторов , работающих на разнице температур, известен давно. Но лишь несколько лет назад технологии стали позволять использовать в качестве источника энергии тепло человеческого тела. Группа исследователей из Корейского ведущего научно-технического института (KAIST) разработала генератор, встроенный в гибкую стеклянную пластинку.

Т акой гаджет позволит фитнес-браслетам подзаряжаться от тепла человеческой руки — например, в процессе бега, когда тело сильно нагревается и контрастирует с температурой окружающей среды. Корейский генератор размером 10 на 10 сантиметров может производить около 40 милливат энергии при температуре кожи в 31 градус Цельсия.

Похожую технологию взяла за основу молодая Энн Макосински, придумавшая фонарик, заряжающийся от разницы температур воздуха и человеческого тела. Эффект объясняется использованием четырех элементов Пельтье: их особенностью является способность вырабатывать электричество при нагреве с одной стороны и охлаждении с другой стороны.

В итоге фонарик Энн производит довольно яркий свет, но не требует батарей-акуумуляторов. Для его работы необходима лишь температурная разница всего в пять градусов между степенью нагрева ладони человека и температурой в комнате.


Шаги по «умной» тротуарной плитке

На любую точку одной из оживленных улиц приходится до 50000 шагов в день. Идея использовать пешеходный поток для полезного преобразования шагов в энергию была реализована в продукте, разработанном Лоуренсом Кемболл-Куком, директором британской Pavegen Systems Ltd. Инженер создал тротуарную плитку, генерирующую электроэнергию из кинетической энергии гуляющих пешеходов.

Устройство в инновационной плитке сделано из гибкого водонепроницаемого материала, который при нажатии прогибается примерно на пять миллиметров. Это, в свою очередь, создаёт энергию, которую механизм преобразует в электричество. Накопленные ватты либо сохраняются в литиевом полимерном аккумуляторе, либо сразу идут на освещение автобусных остановок, витрин магазинов и вывесок.

Сама плитка Pavegen считается абсолютно экологически чистой: ее корпус изготовлен из нержавеющей стали специального сорта и переработанного полимера с низким содержанием углерода. Верхняя поверхность изготовлена из использованных шин, благодаря этому плитка обладает прочностью и высокой устойчивостью к истиранию.

Во время проведения летней Олимпиады в Лондоне в 2012 году плитку установили на многих туристических улицах. За две недели удалось получить 20 миллионов джоулей энергии. Этого с избытком хватило для работы уличного освещения британской столицы.


Велосипед, заряжающий смартфоны

Чтобы подзарядить плеер, телефон или планшет, необязательно иметь под рукой розетку. Иногда достаточно лишь покрутить педали. Так, американская компания Cycle Atom выпустила в свет устройство, позволяющее заряжать внешний аккумулятор во время езды на велосипеде и впоследствии подзаряжать мобильные устройства.

Продукт, названный Siva Cycle Atom, представляет собой легкий велосипедный генератор с литиевым аккумулятором, предназначенным для питания практически любых мобильных устройств, имеющих порт USB. Такой мини-генератор может быть установлен на большинстве обычных велосипедных рам в течение считанных минут. Сам аккумулятор легко снимается для последующей подзарядки гаджетов. Пользователь занимается спортом и крутит педали — а спустя пару часов его смартфон уже заряжен на 100 поцентов.

Компания Nokia в свою очередь тоже представила широкой публике гаджет, присоединяемый к велосипеду и позволяющий переводить кручение педалей в способ получегия экологически безопасной энергии. Комплект Nokia Bicycle Charger Kit имеет динамо-машину, небольшой электрический генератор, который использует энергию от вращения колес велосипеда и подзаряжает ей телефон через стандартный двухмиллиметровый разъем, распространенный в большинстве телефонов Nokia.


Польза от сточных вод

Любой крупный город ежедневно сбрасывает в открытые водоемы гигантское количество сточных вод , загрязняющих экосистему. Казалось бы, отравленная нечистотами вода уже никому не может пригодиться, но это не так — ученые открыли способ создавать на ее основе топливные элементы.

Одним из пионеров идеи стал профессор Университета штата Пенсильвания Брюс Логан. Общая концепция весьма сложная для понмания неспециалиста и построена на двух столпах — применении бактериальных топливных ячеек и установке так называемого обратного электродиализа. Бактерии окисляют органическое вещество в сточных водах и производят в данном процессе электроны, создавая электрический ток.

Для производства электричества может использоваться почти любой тип органического отходного материала - не только сточные воды, но и отходы животноводства, а также побочные продукты производств в виноделии, пивоварении и молочной промышленности. Что касается обратного электродиализа, то здесь работают электрогенераторы, разделенные мембранами на ячейки и извлекающие энергию из разницы в солености двух смешивающихся потоков жидкости.


«Бумажная» энергия

Японский производитель электроники Sony разработал и представил на Токийской выставке экологически чистых продуктов био-генератор, способный производить электроэнергию из мелко нарезанной бумаги. Суть процесса заключается в следующем: для выделения целлюлозы (это длинная цепь сахара глюкозы, которая находится в зеленых растениях) необходим гофрированный картон.

Цепь разрывается с помощью ферментов, а образовавшаяся от этого глюкоза подвергается обработке другой группой ферментов, с помощью которых высвобождаются ионы водорода и свободные электроны. Электроны направляются через внешнюю цепь для выработки электроэнергии. Предполагается, что подобная установка в ходе переработки одного листа бумаги размером 210 на 297 мм может выработать около 18 Вт в час (примерно столько же энергии вырабатывают 6 батареек AA).

Метод является экологически чистым: важным достоинством такой «батарейки» является отсутствие металлов и вредных химических соединений. Хотя на данный момент технология еще далека от коммерциализации: электричества вырабатывается достаточно мало - его хватает лишь на питание небольших портативных гаджетов.

Генерирование собственного электричества – лучшее, что вы можете сделать в борьбе за энергонезависимость. Это электричество вы можете использовать чтобы открывать ворота или гараж, включать наружное освещение, продавать в сеть и уменьшить свои расходы, заряжать автомобиль или даже полностью отключиться от общей сети. В этой статье описаны несколько отличных идей как этого добиться.

Шаги

Часть 1

Солнечная энергия

    Узнайте о солнечных панелях. Солнечные панели это общераспространенное решение с большим количеством преимуществ. Они работают во многих частях света и модульный вариант может быть расширен, чтобы соответствовать вашим потребностям. Существует много хорошо проработанных продуктов.

    • Панели должны быть направлены на юг к солнечному свету (на север в южном полушарии, вверх вблизи экватора). Угол наклона следует установить в зависимости от широты, на которой вы находитесь. Вы можете использовать панели в районах, которые солнечны большую часть года, а также в условиях сплошной облачности.
    • Фиксированные опоры можно устанавливать на отдельной структуре (в которой можно разместить аккумуляторы и контроллер заряда) или на существующей крыше. Их просто установить и обслуживать, если они расположены у земли и у них нет движущихся частей. Следящие опоры поворачиваются вслед за солнцем и более эффективны, но могут стоить дороже, чем просто добавить еще пару панелей на фиксированных опорах, чтобы компенсировать разницу. Это хитроумные механические приспособления, которые легко сломать и у них есть движущие части, которые изнашиваются со временем.
    • Только потому, что заявленная мощность солнечной панели 100 Ватт, это не означает, что она способна вырабатывать ее все время. Мощность будет определена тем как вы установите панель, погодой, или тем что сейчас зима и солнце не поднимается высоко надо горизонтом.
  1. Начните с малого. Купите одну или две солнечные панели для начала. Их можно устанавливать поэтапно, так что вам не надо с самого начала тратить огромные суммы. Большинство систем для крыш могут быть расширены – вам надо обратить на это внимание при покупке. Купите систему, которая может расти вместе с вашими потребностями.

    Разберитесь с обслуживанием вашей системы. Как и все остальное, если вы не будете о ней заботиться, она развалится. Определитесь, как долго она должна прослужить. Небольшая экономия сейчас может стоить вам гораздо больше в будущем. Инвестируйте в заботу о вашей системе и она позаботится о вас.

    • Постарайтесь составить бюджет расходов, связанных с поддержанием работоспособности системы в течение длительного периода времени. Вам следует избегать ситуаций, которые оставят вас без средств посреди проекта.
  2. Выберите тип системы. Решите, хотите ли вы отдельностоящее решение для выработки электричества или решение, которое можно подсоединить к распределительной системе. Отдельностоящим системам нет равных в автономности, вам известен источник каждого использованного ватта. Системы, которые можно подключать в общую сеть дают вам стабильность и избыточность, а также возможность перепродавать электричество поставляющей компании. Если ваша система подключена в общую сеть, а вы следите за расходом энергии так, как будто у вас автономная система, то у вас даже получится зарабатывать небольшой дополнительный доход.

    • Свяжитесь с вашей энергопоставляющей компанией и спросите о системах, которые можно подключать в общую сеть. Возможно, они смогут предоставить льготы и подскажут, кого следует нанять, чтобы разместить ваш надежный источник электричества.

Часть 2

Использование альтернативных систем
  1. Узнайте о ветряных турбинах. Это тоже отличное решение для многих районов. Иногда оно может быть даже более экономически эффективным, чем солнечная энергия.

    • Вы можете использовать самодельную ветряную турбину, сделанную из старого автомобильного генератора при помощи чертежей доступных в Сети. Хоть это и не рекомендуется делать новичкам, но достижение приемлемых результатов возможно. Существуют недорогие готовые решения.
    • У ветровой энергии, однако, есть несколько недостатков. Возможно, вам придется установить турбины слишком высоко, чтобы они работали эффективно, и ваши соседи посчитают их неприятной частью пейзажа. Птицы могут их совсем не замечать ….. до момента, когда будет слишком поздно.
    • Для ветровой энергии нужен более-менее постоянный ветер. Открытые, пустые пространства подходят лучше всего, потому что на них находится минимальное количество препятствий для ветра. Ветровая энергия часто эффективна при использовании в качестве дополнения к системам солнечной и гидро энергии.
    • Изучите гидроэлектрические минигенераторы. Существуют различные виды технических решений от самодельного пропеллера, подсоединенного к автомобильному генератору, до запутанных инженерных систем повышенной надежности. Если у вас есть выход к воде, это может стать эффективным и автономным решением.

      Попробуйте комбинированную систему. Вы всегда можете объединить любые из этих систем, чтобы получать энергию круглый год и в достаточном количестве для вашего дома.

      Подумайте об автономном генераторе. Если распределяющей сети нет или вы хотите запасной источник на случай отключения/катастрофы, вам может пригодиться генератор. Они могут работать на разных видах топлива и доступны разных размеров и мощности.

      • Многие генераторы очень медленно реагируют на изменения в нагрузке (подключение мощных приборов заставляет питание колебаться).
        • Маленькие, повсеместно доступные в строительных магазинах генераторы предназначены для нечастого использования в чрезвычайных ситуациях. Если их использовать в качестве основного источника энергии они чаще всего ломаются.
      • Большие бытовые генераторы стоят дорого. Они работают на бензине, дизельном топливе или сжиженном газе и обычно оснащены системой автоматического старта, которая запускает их в момент прекращения подачи электричества из распределительной сети. Если вы решили установить такой, убедитесь, что у вас работает дипломированный электрик и строительные нормы соблюдаются. При неправильной установке он может убить электриков, которые отключают основное электропитание не зная, что есть еще и аварийный генератор.
      • Генераторы для автодач, трейлеров или лодок небольшого размера, тихие, предназначены для продолжительного использования и гораздо более доступны. Они работают на бензине, дизельном топливе или сжиженном газе и могут работать по нескольку часов в день в течение нескольких лет.
    • Избегайте теплоэлектрогенераторов. Теплоэлектрогенераторы (ТЭГ) или совмещенные генераторы, которые производят электроэнергию из тепла – обычно пара – старомодны и неэффективны. Несмотря на то, что у них есть много поклонников, вам следует воздержаться от их использования.

Часть 3

Делаем верный выбор

    Пройдитесь по магазинам. Множество производителей предлагают различные товары и услуги на рынке экологически чистой электроэнергии и некоторые из их решений подходят вам лучше, чем другие.

    Исследуйте. Если вы заинтересованы в конкретном товаре проведите сравнение цен перед тем как будете говорит с поставщиком.

    Спросите совета у профессионала. Найдите кого-то кому вы доверяете, чтобы помог принять вам решение. Есть поставщики, которым интересен ваш проект, и есть которым не интересен. Найдите в Интернете сообщество домашних мастеров или ему подобное чтобы получить совет, который исходит от кого-то, кто не собирается вам ничего продавать.

    Разузнайте о льготах. Не забудьте узнать о местных, региональных и федеральных программах льгот, когда будете делать свои покупки. Существует много программ по которым ваши затраты по монтажу могут быть просубсидированы, либо же вам предоставят налоговые льготы за переход на экологически чистую электроэнергию.

    Вам нужна квалифицированная помощь. Не каждый подрядчик или рабочий квалифицирован для установки таких систем. Работайте только с опытными поставщиками и монтажниками, у которых есть разрешение на работу с вашим оборудованием.

Часть 4

Готовимся к худшему

    Узнайте о страховым покрытии для более крупных объектов. Ваш текущий полис на домовладение может не покрывать разрушение вашей системы при катастрофе, что может очень сильно вас разочаровать.

    Познакомьтесь со специалистом по обслуживанию систем альтернативной энергии. Если уж вы за это взялись, не стесняйтесь просить о помощи.

    Спланируйте запасной источник энергии. Естественные источники, которые используют автономные энергетические системы не всегда надежны. Солнце светит не всегда, как и ветер не всегда дует, вода тоже не всегда течет.

    • Использование системы подключенной в распределительную сеть - самое недорогое решение для большинства людей, особенно для тех, кто уже является клиентом энергопоставляющих компаний. Они устанавливают один тип системы (например, солнечные панели) и подключают ее к распределительной сети. Когда поступление электроэнергии недостаточно, сеть покрывает недостаток, а когда электроэнергии в избытке – сеть выкупает излишек. Крупные системы могут постоянно крутить счетчик электроэнергии в обратную сторону.
    • Если распределительной сети по близости нет, может быть гораздо дороже подключиться к ней (или даже подсоединить пристройку к дому), чем производить и хранить свою собственную электроэнергию.
  1. Узнайте о хранении электричества. Распространенное решение для автономного хранения электричества это свинцово-кислотные аккумуляторы глубокой зарядки. Каждый вид аккумуляторов нуждается в разных циклах зарядки, поэтому убедитесь, что ваш контроллер заряда может работать с вашим типом аккумуляторов и правильно для этого настроен.

Часть 5

Выбор и использование аккумуляторов

    Используйте аккумуляторы одного типа. Аккумуляторы нельзя мешать между собой и обычно новые аккумуляторы не очень хорошо работают, когда смешаны с более старыми.

    Подсчитайте сколько аккумуляторов вам понадобится. Их емкость исчисляется в ампер-часах. Для грубого подсчета киловатт-часов умножьте ампер-часы на количество вольт (12 или 24 вольта) и разделите на 1000. Чтобы получить ампер-часы из киловатт-часов просто умножьте на 1000 и разделите на 12. Если ваше дневное потребление будет 1 киловатт-час вам понадобится примерно 83 ампера емкости 12-вольтового хранилища, но вам надо будет 5-кратное количество от рассчитанного (считая, что вы не хотите разряжать аккумуляторы более чем на 20%) или примерно 400 ампер-часов, чтобы получить требуемую мощностью.

  1. Выберите тип аккумулятора. Существует много видов аккумуляторов и очень важно выбрать наиболее подходящий. Понимание что вам пойдет, а что нет, очень важно для снабжения вашего дома электроэнергией.

    • Самые распространенные это кислотные аккумуляторы. Их необходимо обслуживать (верхушки снимаются, чтобы можно было долить дистиллированной воды) и время от времени они нуждаются в «компенсационной» перезарядке, чтобы убрать серу с пластин и поддерживать банки в более-менее одинаковом состоянии. У некоторых высококачественных аккумуляторов банки в 2,2 вольта можно заменять независимо от других, если они испортились. «Необслуживаемые» аккумуляторы теряют жидкость по мере выпускания газа и, в конце концов, высыхают.
    • Гелиевые аккумуляторы не надо обслуживать и они не прощают проблем с зарядкой. Зарядное устройство, предназначенное для кислотных аккумуляторов, испарит гель с пластин и между электролитом и пластинами образуются зазоры. Как только одна банка пришла в состояние перезаряда (из-за неравномерного износа), весь аккумулятор становится негодным. Такие аккумуляторы хороши как часть небольшой системы, но не подходят для крупных систем.
    • Аккумуляторы с абсорбированным электролитом более дорогие, чем аккумуляторы любого другого типа, и не нуждаются в обслуживании. Они сохраняют работоспособность на протяжении долгого времени при условии, что их правильно заряжают и не позволяют слишком сильно разряжаться. Кроме того, они не могут дать протечку – даже если вы разобьете их кувалдой (мы правда не уверены, зачем вам это вообще может понадобиться). При перезаряде также они выпускают газ.
    • Автомобильные аккумуляторы – они для автомобилей. Автомобильные аккумуляторы не подходят для случаев, в которых требуются аккумуляторы глубокой зарядки.
    • Лодочные аккумуляторы это гибрид стартового аккумулятора и аккумулятора глубокой зарядки. В качестве компромиссного решения они хорошо подходят для лодок, но не очень хороши в качестве источника электроэнергии для дома.
  2. Советы
    • В любом месте, где энергетические системы не подведены прямо к крыльцу, стоимость подключения нового строения к распределительной сети может превысить стоимость установки собственной системы генерирования электроэнергии.
    • Аккумулятор глубокого заряда не работают хорошо, если они часто разряжаются более чем на 20% своей емкости. Если такое происходит, их срок службы существенно уменьшится. Если вы большую часть времени разряжаете их не сильно или сильно, но не часто, их срок службы будет продлен.
    • Существует много возможностей профинансировать установку системы, а также налоговых/эксплуатационных льгот для некоторых источников электроэнергии.
    • Возможно объединиться с соседями по удаленному району и совместно оплатить систему генерации электроэнергии. О чем бы ни договорились заинтересованные стороны, в будущем это может стать источником некоторых сложностей. Возможно, придется создать кооператив домовладельцев или подобную организацию.
    • Если это не оправдывает себя в рублях и копейках оправдает ли это себя в:
      • Срочной необходимости (отсутствие систем обеспечения электроэнергией)?
      • Внутреннее спокойствие?
      • Кабель не проходит по вашей собственности?
      • Как повод для хвастовства?
    • В Сети есть много статей с большим количеством хорошей информации, но большая часть из нее сосредоточена на продаже оборудования определенного поставщика.
    • Если у вас есть доступ к проточной воде, микро-гидроэлектростанция возможно подойдет лучше, чем комбинированное решение из солнечных панелей и ветровых турбин.
    • Сборка элементов системы не является сложной задачей при условии, что вы умеете обращаться с электричеством.

    Предупреждения

    • Если вы не знакомы с теорией электричества и у вас нет познаний в технике безопасности, считайте что это список вещей, которые вам надо узнать или передать другому человеку для выполнения.
      • Вы можете нанести непоправимый урон собственности (сжечь проводку, повредить крышу или сжечь дом дотла)
      • Вы можете причинить телесные повреждения или даже смерть (удар электрическим током, падение с крыши, падение незакрепленных деталей на людей)
      • Аккумуляторы при коротком замыкании или в невентилируемом помещении могут стать причиной взрыва.
      • Разбрызганная аккумуляторная кислота может привести к серьезным ожогам и слепоте.
      • Даже постоянный ток такой мощности может остановить ваше сердце или причинить серьезные ожоги, если пройдет по украшениям надетым на вас.
      • Если дополнительный источник электропитания подключен через панель предохранителей (инвертор или генератор), убедитесь что есть очень заметный знак, предупреждающий об этом обслуживающий персонал энергопоставляющей компании. В противном случае они могут отключить основной ввод электричества и, считая, что цепь обесточена, быть убитыми электрическим током от резервного источника.
      • Вот это интересно. Вон те невинные крутящиеся колесики и красные панельки могут вас убить совсем насмерть.
    • Что бы вы ни устанавливали, убедитесь, что страховка на домовладение покроет это. Не надо надеяться на авось.
    • Сверьтесь с местными строительными нормами и правилами (СНиП).
      • Некоторые люди на самом деле считают солнечные панели «не привлекательными».
      • Некоторые люди считают ветровые турбины «шумными» И «не привлекательными».
      • Если у вас не прав на использование водных ресурсов для вас могут сделать исключение в этом случае.
    • Существую системы «все-в-одном», но обычно они или невелики, или дорогие, или и то и другое.

По десятку раз на дню, включая и выключая свет и пользуясь бытовой техникой, мы даже не задумываемся, откуда берется электричество и какова его природа. Понятно конечно, что по ЛЭП (линия электропередач ) оно поступает от ближайшей электростанции, но это весьма ограниченное представление об окружающем мире. А ведь если выработка электроэнергии во всем мире прекратится хотя бы на пару дней, количество погибших будет измеряться сотнями миллионов.

Как возникает ток?

Из курса физики мы знаем, что:

  • Вся материя состоит из атомов, мельчайших частиц.
  • По орбите вокруг ядра атома вращаются электроны, они имеют отрицательный заряд.
  • В ядре располагаются положительно заряженные протоны.
  • В норме эта система находится в состоянии равновесия.

А вот если хоть один атом потеряет всего один электрон:

  1. Его заряд станет положительным.
  2. Положительно заряженный атом начнет притягивать к себе электрон, из-за разности зарядов.
  3. Чтобы получить для себя недостающий электрон, его придется «сорвать» с чьей-то орбиты.
  4. В результате еще один атом станет положительно заряженным и все повторится, начиная с первого пункта.
  5. Такая цикличность приведет к образованию электрической цепи и линейному распространению тока.

Так что с точки зрения ядерной физики все предельно просто, атом пытается получить то, чего ему больше всего не хватает и таким образом запускает начало реакции .

«Золотой век» электроэнергии

Под свои нужды человек приспособил законы Вселенной относительно недавно. А произошло это примерно два века назад, когда изобретатель по фамилии Вольт разработал первый аккумулятор, способный на длительное время сохранять заряд достаточной мощности.

Попытки использовать ток себе во благо имеют древнюю историю. Археологические раскопки показали, что еще в римских святилищах, а потом и в первых христианских храмах были кустарные «батарейки» из меди, которые давали минимальное напряжение. Такая система подключалась к алтарю или его оградке и как только верующий прикасался к сооружению, он тут же получал «божественную искру ». Скорее это изобретение одного умельца, чем повсеместная практика, но факт любопытный, в любом случае.

Двадцатый век стал периодом расцвета электроэнергии :

  1. Появлялись не только новые виды генераторов и аккумуляторов, но и разрабатывались уникальные концепции добычи этой самой энергии.
  2. Электрические приборы за несколько десятилетий плотно вошли в жизнь каждого человека на планете.
  3. Не осталось стран, кроме наименее развитых, где не были бы построены электростанции и проведены линии электропередач .
  4. Весь дальнейший прогресс опирался на возможности электричества и устройств, которые от него работают.
  5. Эпоха компьютеризации сделала человека зависимым от тока, в прямом смысле этого слова.

Как получить электричество?

Представлять человека в виде наркомана, которому регулярно необходима «живительная доза электричества» немного наивно, но попробуйте полностью обесточить свое жилище и спокойно прожить хотя бы сутки. Отчаянье может заставить вспомнить оригинальные способы добычи тока. На практике это мало кому пригодится, но может кому-то пара Вольт спасет жизнь или поможет произвести впечатление на ребенка:

  • Разрядившийся аккумулятор телефона можно потереть об одежду, подойдут джинсы или шерстяной свитер. Статического электричества надолго не хватит, но это уже хоть что-то.
  • Если рядом есть морская вода , можно налить ее в две банки или стакана, соединить их медным проводом, предварительно обмотав его оба конца фольгой. Конечно для всего этого, помимо соленой воды, понадобятся еще емкости, медь и фольга. Не лучший вариант для экстремальных ситуаций.
  • Куда реалистичнее наличие железного гвоздя и небольшого медного прибора. Два куска металла следует использовать как анод и катод - гвоздь в ближайшее дерево, медь в землю. Между ними натянуть любую нить, незамысловатая конструкция даст примерно один Вольт.
  • Если использовать драгоценные металлы - золото и серебро, получится добиться большего напряжения.

Как экономить электричество?

У экономии электроэнергии могут быть разные причины - желание сохранить экологию, попытка уменьшить ежемесячные счета или что-то другое. Но способы всегда примерно одни:

Не всегда следует себя в чем-то сурово ограничивать, чтобы снизить расходы. Есть еще один неплохой совет - отключайте от сети все приборы, пока вы ими не пользуетесь .

Холодильник, естественно, не в счет. Даже находясь в «ждущем» режиме техника потребляет некоторое количество электричества. Но если хоть на секунду задуматься, то можно прийти к мысли, что почти все приборы большую часть суток вам не нужны. И все это время они продолжают сжигать ваше электричество .

Современные технологии тоже нацелены на то, чтобы снизить общий уровень потребления электроэнергии. Чего стоят хотя бы энергосберегающие лампочки , которые могут уменьшить расходы на освещение помещения, раз так в пять. Совет жить по «солнечным часам» может показаться диким и абсурдным, но уже давно доказано, что искусственное освещение повышает риск развития депрессии.

Как вырабатывается электричество?

Если углубляться в научные детали:

  1. Ток появляется за счет потери атомом электрона.
  2. Положительно заряженный атом притягивает к себе отрицательно заряженные частицы.
  3. Происходит потеря другим атомом своих электронов с орбиты и история повторяется снова.
  4. Это объясняет направленное движение тока и наличие вектора распространения.

А вообще электричество вырабатывается электростанциями . Там либо сжигают топливо, либо используют энергию расщепления атомов, а может даже пускают в ход природные стихии. Речь идет о солнечных батареях, ветряках и ГРЭС.

Полученную механическую или тепловую энергию, за счет генератора, переводят в ток. Он накапливается в аккумуляторах и по ЛЭП поступает в каждый дом.

Сегодня не обязательно знать, откуда берется электричество, чтобы пользоваться всеми благами, которое оно предоставляет. Люди уже давно отошли от первоначальной сути вещей и потихоньку начинают о ней забывать.

Видео: откуда поступает электричество к нам?

В этом видео наглядно будет показан путь электричества от электростанции до нас, откуда оно берется и как поступает в наш дом:

Наверняка каждый из нас открыл для себя истину, что наличие домашней электрической сети – не залог того, что ток будет подаваться в ваш дом бесперебойно. А у некоторых из нас имеется собственность в местности, куда электричество просто не проведено. В этом случае есть выход - генератор электрического тока. Речь в статье пойдет о том, как работает это устройство и о критериях его выбора для собственного пользования.

Как работает генератор электрического тока?

Вообще, электрогенераторы – это электрические машины, которые служат для того, чтобы преобразовывать энергию механическую в электрическую. Принцип действия генератора электрического тока работает на явлении электромагнитной индукции. Согласно нему в проводе, который двигается в магнитном поле, наводится ЭДС, то есть электродвижущаяся сила. В генераторе применяются электромагниты в виде обмоток из медного провода или катушек индуктивности. Когда проволочная катушка начинает вращаться, на ней вырабатывается электрический ток. Но это происходит лишь в том случае, если ее витки пересекают магнитное поле.

Виды генераторов электрического тока

В первую очередь электрогенераторы производят постоянный и переменный ток. Электрический генератор постоянного тока, состоящий из неподвижного статора с дополнительными обмотками и вращающегося ротора (якоря), служит для создания постоянного тока. Такие устройства используются в основном на предприятиях металлургии, в общественном транспорте и морских судах.

Электрические генераторы переменного тока превращают из механической энергии переменный ток путем вращения прямоугольного контура вокруг неподвижного магнитного поля или наоборот. То есть ротор за счет вращения в магнитном поле вырабатывает электроэнергию. Причем у генератора переменного тока такие вращающиеся движения совершаются намного быстрее, нежели в генераторе постоянного тока. Кстати, для дома применяются генераторы электрического тока переменного.

Кроме того, различаются генераторы по виду источника энергии. Они бывают ветровыми, или бензиновыми. Самыми популярными изделиями на рынке генераторов электрического тока считаются бензиновые, благодаря довольно простой эксплуатации и сравнительно невысокой стоимости. В целом такой прибор представляет собой генератор, соединенный с бензиновым двигателем. За 1 час работы такое устройство расходует до 2,5 л. Правда, такой генератор подходит лишь для экстренного источника тока, поскольку в сутки они могут вырабатывать ток максимум 12 часов.

Газовый генератор отличается выносливостью и экономностью. Работает такой агрегат как от газопровода, так и от сжиженного газа в баллонах. Хорошим ресурсом работы обладает дизельный электрический генератор тока. Прибор потребляет около 1-3 л топлива в час, но зато намного мощнее и подходит для постоянного электроснабжения даже большого дома.

Экологичностью отличаются ветровые электрогенераторы. К тому же ветер – бесплатное топливо. Однако стоимость самого агрегата высокая, да и габариты его немаленькие.

Как выбрать генератор электрического тока для дома?

Перед покупкой прибора важно определиться с его мощностью. Заранее следует рассчитать суммарную мощность, которая будет потребляться всеми вашими приборами, добавив небольшой запас (около 15-30 %). Кроме того, обратить внимание стоит и на тип топлива. Самыми выгодными считаются генераторы, работающие на газу. Экономным считается дизельный генератор, но сам прибор стоит немало. Бензиновый электрогенератор стоит сравнительно недорого, но топливо расходуется больше. Так же учтите при покупке тип фазы. Трехфазовые генераторы электрического тока, работающие с напряжением 380 В, универсальны. Если у вас нет дома трехфазовых приборов, вам подойдет агрегат, работающий с фазой в 230 В.

Понравилась статья? Поделитесь с друзьями!