Органическое топливо. Жидкое топливо и его характеристика Нефть и ее использование

Топливо - это горючие вещества, основной составной частью которых является углерод, применяемые с целью получения при их сжигании тепловой энергии.

Классификация . По физическому состоянию топливо бывает твердое, жидкое, газообразное. Стекловаренные печи работают на жидком и газообразном топливе.

К топливу, используемому для стекловаренных печей, предъявляют ряд требований: при сгорании оно должно выделять значительное количество тепла на единицу своей массы или объема, не должно выделять газов, вредно действующих на здоровье людей, а также отрицательно влияющих на материалы топок и печей, должно быть удобным для транспортирования и сжигания.

Основной характеристикой топлива является его теплотворность Q. Теплотворностью топлива называется количество тепла, выделяемое при полном сгорании единицы массы или объема топлива (1 кг жидкого топлива или 1 м 3 газообразного). Теплотворность измеряется в ккал/кг или ккал/м 3 (в СИ - кДж/кг, кДж/м 3).

Теплотворность различных видов топлива колеблется в широких пределах - от 1000 до 10 000 ккал/кг.

По происхождению топливо подразделяется на естественное и искусственное. Последнее получается в результате переработки естественного топлива. В табл. 3 приводится классификация промышленного топлива.

В промышленности используют твердое, жидкое и газообразное топливо. Различают природное топливо, добываемое на поверхности земли или в ее недрах, и искусственное, получаемое путем переработки природного.

К главным требованиям, предъявляемым к технологическому топливу, относятся: низкая стоимость добычи, низкая стоимость транспортирования, удобство применения, возможность использования с высоким коэффициентом полезного действия, малое содержание вредных примесей.

Различные виды топлива (твердое, жидкое и газообразное) характеризуются общими и специфическими свойствами. К общим свойствам топлива относятся теплота сгорания и влажность, к специфическим - зольность, сернистость (содержание серы), плотность, вязкость и другие свойства.

Теплота сгорания - количество теплоты, которое выделяется при полном сгорании 1 кг или 1 м 3 топлива. Энергетическая ценность топлива в первую очередь определяется его теплотой сгорания.

Различают высшую и низшую теплоту сгорания. Низшая теплота сгорания отличается от высшей количеством теплоты, затрачиваемой на испарение влаги, содержащейся в топливе и образующейся при сгорании водорода. Низшую теплоту сгорания учитывают для подсчета потребности в топливе и его стоимости при составлении тепловых балансов и определении коэффициентов полезного действия установок, использующих топливо. При сопоставлении различных видов топлива пользуются понятием условного топлива, характеризующимся низшей теплотой сгорания, равной 29 МДж/кг.

Влажность (содержание влаги) топлива снижает его теплоту сгорания вследствие увеличенного расхода теплоты на испарение влаги и увеличения объема продуктов сгорания (из-за наличия водяного пара).

Зольность - количество золы, образующейся при сгорании минеральных веществ, содержащихся в топливе. Минеральные вещества, содержащиеся в топливе, понижают его теплоту сгорания вследствие уменьшения содержания горючих компонентов (основная причина) и увеличения расхода тепла на нагрев и плавление минеральной массы.

Сернистость (содержание серы) относится к отрицательному фактору топлива, так как при его сгорании образуются сернистые газы, загрязняющие атмосферу и разрушающие металл. Кроме того, сера, содержащаяся в топливе, частично переходит в выплавляемый металл, сваренную стекломассу, снижая их качество. Например, для варки хрустальных, оптических и других стекол нельзя использовать топливо, содержащее серу, так как сера значительно понижает оптические свойства и колер стекла.

Состав топлива . Топливо различных видов, месторождений и шахт различается по своему составу. При рассмотрении твердого и жидкого топлива принято различать следующие его составляющие: углерод, водород, серу, кислород, азот, золу и влагу. Применительно к газообразному топливу под составом понимают в основном: оксид углерода, водород, метан, этан, пропан, бутан, этилен, бензол, сероводород и др. Входящие в состав топлива кислород и азот относят к внутреннему органическому балласту топлива, а золу и влагу - к внешнему.

Состав твердого и жидкого топлива выражают в процентах по массе, газообразного - в процентах по объему.

Твердое и жидкое топливо состоит из горючей и негорючей частей. К горючей части топлива относят углерод, водород, кислород, азот и серу. Кислород и азот не горят; их включают в состав горючей массы условно. Поэтому горючую часть топлива называют условно горючей массой. Негорючая часть топлива - балласт - состоит из влаги и золы. Органическую массу топлива составляют углерод, кислород и азот.

Топливо в том виде, в каком оно поступает в топки печи для сжигания, носит название рабочего топлива. Ввиду того что содержание в нем влаги может колебаться в широких пределах, состав топлива часто характеризуют его сухой массой.

Для обозначения состава, к которому относится содержание того или иного элемента в топливе, применяют индексы о, г, с и р, которые читаются соответственно: о - органическая масса; г - горючая масса; с - сухое топливо; р - рабочее топливо. Например, CO - содержание углерода в органической массе; Sr - содержание серы в условно горючей массе; Ас - содержание, золы в сухом топливе; Wp - содержание влаги в рабочем топливе.

Под энергетическим топливом понимают горючие ве­щества, которые экономически целесообразно использовать для получения тепловой и электрической энергии. По агрегатному состоянию топлива делят на твердые, жидкие и газообразные. По происхождению - на природные, образовавшиеся из остатков растительного и животного происхождения в течение длительного времени, и искусственные, полученные в результате переработки природных топлив. К первым относятся уголь, нефть, природный газ. Ко вторым - кокс, брикеты, отходы углеобогащения, дизель­ное топливо, мазут, доменный, коксовый и генераторный газы.

Топливо состоит из горючей и минеральной части и влаги. В состав горючей части входят углерод С, водород Н и сера S, на­ходящиеся в сложных соединениях с кислородом О и азотом N. Важной характеристикой топлива является теплота сгорания. Теплота сгорания - количество теплоты, выделяющейся при пол­ном сгорании топлива. Различают низшую и высшую теплоту сгорания.

Углерод является основной частью топлива. Чем больше его в составе, тем выше теплота сгорания топлива. Содержание углерода по массе в твердом топливе колеблется от 25 (сланец и торф) до 70 % (антрацит). Водород содержится в топливе в небольшом количестве 2-10 %. Теплота его сгорания в 4 раза больше, чем углерода. Кислород входит в состав топлива в виде различных соединений, в том числе с горючими элементами, что снижает количество теплоты, выделяемой при сжигании топлива. Поэтому кислород относят к балласту топлива. Азот также относят к бал­ласту топлива. Содержание его невелико (в твердом топливе до 3 % по массе). При горении большая часть азота топлива перехо­дит в токсичные оксиды N0 и N0*.

Серу в зависимости от вида соединения, в которое она входит, делят на органическую S0, если она связана с углеродом, водоро­дом, азотом и кислородом; колчеданную SK - соединение с желе­зом (обычно это железный колчедан); сульфатную Sc, находя­щуюся в виде соединений FeS04, MgS04, CaS04. Сера, входящая в состав органических и колчеданных соединений, участвует в про­цессе горения, выделяя при этом теплоту и образуя сернистый

S02 и серный S03 ангидриды. Поэтому часто органическую и кол­чеданную серу называют летучей горючей

Сера, входящая в состав FeS04, MgS04, CaS04 и т. п., не горит, так, при сжигании топлива сульфаты практически не разлагаются. В твердом топливе содержание серы достигает 5 %, в жидком 3,5 %. Наличие серы в топливе нежелательно, так как образую­щиеся при горении серы оксиды S02 и S03 в присутствии влаги дают растворы сернистой и серной кислоты, которые вызывают корро­зию труб поверхностей нагрева конвективной шахты котла и ока­зывают вредное воздействие на окружающую среду.

Под минеральной частью топлива понимают негорючие при­меси. Количество их зависит от происхождения топлива и техно­логии его добычи. Различают внутренние минеральные примеси, образовавшиеся при формировании угольной залежи, и внешние минеральные примеси, попавшие в топливо при его добыче из при­легающих пластов пород. Внутренние минеральные примеси в от­личие от внешних достаточно равномерно распределены в топливе и поэтому практически не могут быть отделены от горючей массы.

При горении топлива из минеральных примесей образуется зола А. Она характеризует минеральную часть топлива. Содер­жание золы А в топливе определяется по величине твердого остатка, полученного после сжигания предварительно высушен­ной пробы топлива определенной массы в платиновом тигле и последующего прокаливания до постоянного значения массы при температуре 800 °С. При проектировании котлов, и в первую оче­редь их топок, важное значение имеет температурная характери­стика плавкости золы. Она зависит от состава золы и окружающей ее газовой среды. Оценка плавкости проводится по температурам трех состояний золы: U - начала деформации; t2 - начала раз­мягчения; t3 - жидкоплавкого состояния:

Для принятия мер по исключению загрязнений поверхностей нагрева, расположенных за топкой, важно знать температуру затвердевания золы. Обычно эта температура на 50 °С ниже t2. При горении топлива в топке в зоне высоких температур проис­ходит частичное или полное расплавление золы. Некоторая ее часть уносится с продуктами сгорания из топки. Остальная зола, частично разлагаясь, сплавляется или спекается в шлак, который затем в жидком или твердом состоянии удаляется из нижней части топки. Под действием высоких температур содержащиеся в шлаке оксиды вместе с другими веществами образуют многоком­понентные соединения, и температура плавления шлака отли­чается от температуры ts жидкоплавкого состояния золы. В топках с жидким шлакоудалением для свободного вытекания шлака из топки его температура должна быть выше температуры ts жидко - плавкого состояния золы. Эту температуру называют температу­рой /нж нормального жидкого шлакоудаления, она определяется 22

Химическим составом шлака. Как правило, = ta + (100-4- 200) °С.

Влага W, как и минеральная часть, является балластом топ­лива. Она снижает его теплоту сгорания. Кроме того, на ее испа­рение расходуется часть теплоты сгоревшего топлива. Влагу, содержащуюся в топливе, делят на внешнюю и внутреннюю (гигро­скопическую). Внешняя влага попадает в топливо при его добыче, транспортировке и хранении. Количество ее колеблется в широ­ких пределах 1-40 %. Внешнюю влагу можно удалить из топлива при его сушке. Внутренняя влага связана как с органической частью топлива, так и с минеральной. К ней относят коллоидную и гидратную влагу. Коллоидная влага образует с топливом гели. Количество ее зависит от природы и состава топлива, содержания / влаги в атмосферном воздухе. Гидратная влага химически свя­зана с минеральными примесями топлива. Содержание ее невелико. При сушке топлива часть коллоидной влаги испаряется, а содер­жание гидратной влаги не меняется.

Влажные твердые топлива на воздухе теряют влагу, а подсу­шенные приобретают ее. Эти процессы происходят до наступления равновесия между парциальным давлением паров воды в воздухе и топливе. Топливо с полученной таким образом влажностью называют воздушно-сухим. Если воздушно-сухое топливо нагреть при атмосферном давлении до температуры 105 °С, то вся влага из топлива будет практически удалена. Количество влаги, удален­ной из воздушно-сухого топлива, называют гигроскопической влажностью WrH.

Состав топлива в том виде, в каком оно поступает на ТЭС, выраженный совокупностью отдельных элементов и компонент (по массе для твердого и жидкого топлива), называют рабочей массой топлива:

TOC o "1-3" h z cp + № + Sp 4-Op + Np + Wp + Ap = 100 %. (1)

Если из топлива удалена внешняя и внутренняя влага, то су­хая масса имеет следующий состав:

Cc-j-Hc-fSc + Oc-fNc+Ac = 100 о/0. (2)

Исключив из сухой массы золу, получим горючую массу топ­лива

Cr + Hr + Sr + Or-f №= 100 %. (3)

Если из горючей массы выделить колчеданную серу, то остав­шуюся массу топлива называют органической массой

Сг + Нг + Ог + № = 100 %. (4)

Состав рабочей и сухой масс одного и того же топлива в зависи­мости от условий добычи и погоды может колебаться в достаточно широких пределах. Состав горючей массы топлива постоянен. Поэтому его используют для проведения пересчета на сухую и ра­бочую массы. Формулы пересчета состава, например, с рабочей

2. Коэффициент пересчета состава твердых и жидких теплив с одной массы на другую

Заданная масса

Искомая масса

Органическая

Органи­ческая

Массы на сухую легко получить, поскольку в 1 кг рабочей массы содержится (100- №р)/100 (кг) сухой массы топлива. Следова­тельно,

CP + Нр + Sp + О" + Np + W" Н - А" _ 100 ~

С + нс -)- sc + ос + ne + ас 100 - w" 100 100 "

Ср = Сс(100- Wp)/100: НР = НС(100-Wp)/100

Коэффициент пересчета (100 -Wp)/100 постоянен для всех элементов топлива. Коэффициенты пересчета состава твердых и жидких топлив с одной массы на другую приведены в табл. 2.

Если топливо нагревать без доступа воздуха, то из него в ре­зультате термического разделения нестойких содержащих кисло­род углеводородистых соединений выделяются летучие вещества и остается твердый нелетучий остаток. Выход летучих и свойства твердого остатка являются важными теплотехническими характе­ристиками твердого топлива.

Выход летучих Ул определяют по уменьшению горючей массы топлива при его нагревании в їечение 7 мин без доступа воздуха при температуре 850 °С и выражают в % горючей массы топлива. В состав летучих обычно входят водород, углеводороды, оксид и диоксид углерода. Величина выхода летучих и температура 4ых начала их выхода зависят от возраста топлива. Чем выше выход летучих и ниже температура начала их выделения, тем легче воспламеняется топливо. Наибольший выход летучих и наи - 24

Меньшую температуру начала их выхода имеют молодые топлива: у торфа Vr„ = 70 %, *вых = 100-г - ПО °С; у бурого угля.Утя = « 40-1-65 %; W 130-і-170 °С.

Твердый остаток, который остается после выхода летучих из топлива может быть спекшимся, слабоспекшимся и порошкообраз­ным. Лишь некоторые каменные угли дают плотный спекшийся 1 остаток с большим числом пор, называемый коксом.

Теплоту сгорания топлива определяют опытным путем. Коли­чество выделяемой теплоты зависит от конечного состояния про­дуктов сгорания и в частности от того, в каком агрегатном состоя­нии находится влага (в виде пара или воды). В связи с этим разли­чают высшую Qb и низшую теплоту сгорания.

Различие между Qjj и Ql состоит в том, что первая учитывает теплоту, которая выделяется при конденсации водяных паров (влага в продуктах сгорания находится в виде воды), а вторая эту теплоту не учитывает. Так как в котле температура продуктов сгорания достаточна высока и конденсации водяных паров не про­исходит, теплота, затраченная на испарение влаги, теряется. По­этому в тепловых расчетах используется низшая теплота сгорания рабочего топлива. Если известно Qb, то = Ql - 25,2 (Wp/100 + 9Н7Ю0),

Где 25,2 (Wp/100 +9№/100) - количество теплоты, затраченной на испарение влаги (Wp/ЮО), содержащейся в топливе, и воды (9НР/100), образующейся при горении водорода, кДж/кг;

25.2 МДж/кг - значение скрытой теплоты парообразования для воды при давлении, равном 0,1 МПа.

При отсутствии опытных данных приближенное значение для твердого топлива и мазута может быть найдено по формуле, пред­ложенной Д. Н. Менделеевым,

QS = 0,339СР + 1,03НР - 0,109 (Ор - Sp) - 0,259WP.

Для сравнения различных топлив используют понятие услов­ного топлива, т. е. топлива, теплота сгорания которого равна

29.3 МДж/кг. Понятием условного топлива пользуются при опре­делении различных топливных ресурсов, сравнении удельных расходов топлива на единицу выработанной энергии и проведении технико-экономических расчетов. При сравнительной оценке ка­чества топлив удобны приведенные к низшей теплоте сгорания характеристики топлив % кг/МДж:

Wn = Wp/Qp„; Ап = Ap/Qp; Sn = SP/QH-

Приведенные характеристики топлив Wn, А" и S" показывают, сколько на 1 МДж низшей теплоты сгорания приходится влаги, золы и серы, в % рабочей массы топлива. В зависимости от при­веденной влажности принято считать топлива: маловлажными с W" = 0,7 % - кг/МДж, средней влажности с Wn = 0,7ч - 1,89 % кг/МДж, высоковлажными с Wn > 1,89 %■ кг/МДж.

Твердое топливо характеризуется абразивностью - свойством при контакте с другими материалами вызывать износ последних, что зависит от количества содержащихся в нем колчеданной серы, золы и ее состава. Эта характеристика топлива важна для выбора оборудования системы пылеприготовления.

Твердость твердого топлива и сопротивляемость его измель­чению (размолу) характеризуются коэффициентом размолоспо - собности &ло (отношение удельного расхода электроэнергии, за­траченного на помол антрацита, к удельному расходу энергии, требуемому для помола рассматриваемого топлива). Чем мягче топливо, тем больше величина kno. Этот показатель топлива учи­тывается при проектировании систем пылеприготовления и, в пер­вую очередь, при выборе типа и производительности размольного оборудования.

Плотность твердого топлива (в кг/м3), как одна из его ха­рактеристик, широко используется в расчетах систем загрузки, хранения и подачи топлива к системам пылеприготовления. Раз­личают кажущуюся и насыпную плотности. Под кажущейся плот­ностью понимают массу единицы объема куска топлива с внутрен­ними порами, заполненными воздухом и влагой. Насыпная плот­ность представляет собой массу топлива, содержащуюся в единице объема, заполненного кусками топлива, т. е. учитывает также объем воздуха между кусками топлива.

Ископаемые твердые топлива делят на торф, бурые, каменные угли и антрацит. Торф - геологически наиболее молодое твердое топливо. Характеризуется невысокой степенью разложения орга­нических остатков и относительно низкой теплотой сгорания, по­вышенным содержанием летучих (У"л да 70 %), водорода (Нг = = 5ч-6 %), кислорода (Ог > 30 %) и азота (Nr = 2-^2,5 %). Торфу свойственна очень высокая гигроскопичность и влажность (Wp = 35-=-60 %).

К бурым углям (марка Б) относят угли с высшей теплотой сгорания обеззоленной рабочей массы Q|l00/(l00 - Ар) < < 23,9 МДж/кг. По геологическому происхождению они близки к торфу. В бурых углях достаточно велико содержание летучих (К = 65-М0 %), водорода (Нг = 4-f-6,5 % и более) и кислорода (Ог = 15ч-30 %). Они отличаются высокой гигроскопичностью и влажностью, содержание углерода достаточно велико (Сг = = 55-^78 %), а количество слаборазложившихся растительных остатков мало. По влажности бурые угли классифицируют: Б1 - с влажностью более 40 %; Б2 - с влажностью 30-40 % и БЗ - с влажностью менее 30 %.

; К каменным относят угли, у которых 100/(100 - Ар) > > 23,9 МДж/кг. Они характеризуются высокими содержанием углерода (75-97 %), плотностью и теплотой сгорания. С увели­чением содержания углерода доли кислорода, водорода и летучих в топливе уменьшаются. По выходу летучих с учетом способности 26

Спекания твердого остатка принята следующая классификация каменных углей: длиннопламенные (Д), газовые (Г), газовые жир - ч ные (ГЖ), жирные (Ж), коксовые жирные (КЖ), коксовые (К), обогащенные спекающиеся (ОС), слабоспекающиеся (СС), тощие (Т). По мере перехода от углей марки Д к Т выход летучих ме­няется от 36 % и более (Д) до 9-17 % (Т), а влажность соответ­ственно от 14 до 5 %.

К полуантрацитам (ПА) и антрацитам (А) относят угли с QE 100/(100 - Ар) > 23,9 МДж/кг и выходом летучих менее 9 % В них содержится 89-f-92,5 % Сг, 2-ьЗ,6 % Hr, 0,8-f-l,3 % Nr, 2,2-5 % Or, 0,64-0,9 % Sr.

У полуантрацитов выход летучих больше 5 % и теплота сгора­ния выше чем у антрацитов. ПА и А являются высокосортными топливами; в энергетических котлах используют их отходы.

По размерам получаемых при добыче кусков уголь классифи­цируют следующим образом: плита (П), крупный (К), орех (О), мелкий (М), семечко (С), штыб (Ш) и рядовой (Р). Размер кусков угля от класса К к классу Ш уменьшается от 50-100 до 6-13 мм. В классе Ш куски угля мельче 6 мм, а в классе Р размер кусков неограничен и может составлять 0-200 (300) мм. В табл. 3 приве­дена характеристика твердого топлива некоторых месторождений.

Жидкое топливо характеризуется условной вязкостью и темпе­ратурами застывания и вспышки. Условную вязкость принято выражать в условных градусах (ВУ). Ее определяют как отноше­ние времени вытекания определенного объема (2-Ю-4 м3) жидкого топлива ко времени вытекания такого же объема воды при темпе­ратуре 20 °С.

Условную вязкость жидкого энергетического топлива (мазута) обычно включают в его маркировку. Так, цифры, стоящие после буквы М, в марках мазута (например, М 40 и М 200) - условная вязкость при температуре 50 °С (соответственно 40 и 200°ВУ). Условная вязкость сильно зависит от температуры:

°ВУ, = °ВУБО(50/г)п,

Где °Byj - условная вязкость жидкого топлива при темпера­туре °ВУ50 - условная вязкость при t = 50 °С; п - показатель степени, зависящей от величины °ВУ50.

Ниже приведены значения условной вязкости °ВУ50 при раз­личных п

"ВУы............................................ 2 5 10 15 20

Я. ................................................. 1,8 2,3 2,6 2,75 " 2,86

Для качественного распыливания и надежной транспортировки жидкого топлива по трубопроводам его вязкость не должна пре­вышать 2-3 °ВУ. Для выполнения этого условия необходим предварительный подогрев топлива. Температура подогрева ма­зута зависит от его марки и составляет 80-140 °С.

3. Характеристика твердого топлива

Месторождение топлива

Элементарный состав (рабочая масса), %

Донецкое

Кузнецкое

Карагандинское

Экибастузское

Подмосковное

Бабаевское

Кизеловское

Челябинское,

Канско-Ачинское

Назаровское

Ирша-Бородин-

Азейское

Температура застывания - минимальная температура, при которой жидкость теряет текучесть, и слив и перекачка ее стано­вятся невозможны. У мазута эта температура зависит от марки и составляет 5-25 °С.

Температура вспышки - температура, при которой пары жид­кого топлива в смеси с воздухом вспыхивают при соприкосновении с пламенем. Для мазута температура вспышки равна 80-140 °С. При открытой системе подогрева мазута температура его должна быть ниже температуры вспышки на 10-15 °С.

В качестве искусственного жидкого топлива в котлах исполь­зуется мазут трех марок: М40, Ml00 и М200 - тяжелый остаток перегонки нефти, получающейся после отделения из нее легких фракций (бензина, керосина, легроина и др.). Мазут - мало­зольное и почти безводное топливо. Его классифицируют по со­держанию в нем соединений серы и по вязкости. По количеству серосодержащих соединений мазут делят на малосернистый (Sc < 0,5 %), сернистый (Sc = 0,5-2 %) и высокосернистый (Sc > 2 %). В «Основных направлениях экономического и соци­ального развития СССР на 1986-1990 годы и на период до 2000 года» указывается на необходимость существенного сокраще­ния использования мазута в качестве топлива, в первую очередь на ТЭС.

Газообразное топливо представляет собой смесь горючих (во­дорода Н2, углеводородов метанового ряда, тяжелых углеводоро­дов СНа, сероводорода H2S и оксид углерода СО), небольшого количества негорючих газов (кислорода Оа, азота Na, диоксида 28

Температура

Выход летучих

Теплота сгорания

Коэффи­циент размо - лоспо - собно - сти кл0

Объем воздуха и сгорания при а

Продуктов = 1 м"/кг

Углерода С02 и водяных паров Н20). Состав его записывают в виде составляющих его соединений (в % объема). Все расчеты проводят исходя из единицы объема сухого газа, взятого при нормальных условиях (давлении 0,1 МПа и температуре 20 °С)

СН4 + С2Нв + С3Н8 + ■ ■+ Н2 + H2S + СО + N2 + С02 +

Теплота сгорания газообразного топлива при нормальных условиях и известном содержании газов, входящих в его состав,

QM = 0,01

Внешняя влага удаляется из топлива при его естественной сушке в условиях комнатной температуры. Уменьшение веса топлива прекратится при этом тогда, когда наступит равновесие между давлением водяных паров, находящихся в топливе и парциальным давлением водяных паров, находящихся в окружающем воздухе.

Внутренняя влага удерживается в порах топлива вследствие наличия капиллярных сил и удаляется из него только путем нагревания топлива. В сушильном шкафу до 105 0 С. Содержание внутренней влаги в твердом топливе доходит до 10%. Однако найденная таким образом суммарная влажность оказывается меньше действительно находящейся в топливе влажности, потому что в ряде твердых топлив содержится кристаллизационная или гидратная влага, связанная с некоторыми минеральными составляющими топлива: глиной, силикатами, органическими веществами. Эта влага может быть удалена из топлива лишь при температуре 800 0 С.

Наличие влаги в топливе отрицательно сказывается на его качестве, и, следовательно, на работе котельной установки, так как за счет влаги уменьшается в топливе количество горючих веществ, и, конечно, уменьшается количество теплоты, выделяющейся при его сгорании. Кроме этого, часть тепла идет на испарение влаги, и затем уходит вместе с парами из котельной установки, понижая ее к.п.д. Следует отметить также трудность воспламенения топлива, содержащего влагу, увелечение объема дымовых газов, что в свою очередь повышает расход электроэнергии дымососами. При низких температурах уходящих газов наличие в них водяных паров вызывает опасность конденсации последних и возникновения коррозии металлических поверхностей нагрева и дымовых труб.

Зола. Твердый негорючий остаток, получающийся после завершения преобразований в минеральной части топлива в процессе его горения, называют золой. Выход газифицирующейся части примесей уменьшает массу золы по отношению к исходным минеральным примесям топлива, а некоторые реакции, например, окисление железного колчедана, приводят к его увеличению. Обычно масса золы немного меньше массы минеральных примесей в топливе, лишь в горючих сланцах вследствие разложения содержащихся в них карбонатов золы

получается значительно меньше по сравнению с массой минеральных примесей.

Золы как таковой в исходном топливе нет Она возникает в результате сжигания топлива как сухой остаток. В твердых топливах содержание золы колеблется от 2% до 60%.В жидких и газообразных топливах содержание зольного остатка крайне мало.

Зола представляет собой смесь различных минеральных веществ, попавших в топливо. Зола подразделяется на три вида. Первичная зола попадает в исходный материал –древесину- в виде растворенных солей вместе с почвенной водой и равномерно распределяется в ней. Вторичная зола попадает в топливо также извне с подземными водами или в результате горообразующих процессов, происходивших в доистроические времена. Оба вида этой золы выделить из топлива не удается. Третичная зола представляет собой случайную примесь в виде породы, захваченной при добыче топлива и отделяемой от него в результате обогащения.

В топочной камере при высоких температурах часть золы расплавляется,

образуя раствор минералов, который называется шлаком. Из топки шлаки удаляются в жидком или гранулированном состоянии. Для оценки степени засоренности горючей массы топлива зольность относят к его сухой массе, выражая ее в процентах. Зольность определяется сжиганием предварительно высушенной пробы топлива определенной массы в платиновом тигле и прокаливанием до постоянной массы (твердых топлив при температуре 800±25°С, а жидких топлив - 500°С). Зольность топлива изменяется от долей процента в мазуте и древесине до 40-60% в сланцах.

Зола, образующаяся при сгорании топлива при высоких температурах и кратком времени пребывания в топочной камере, по своему химико-минералогическому составу отличается от золы, образующейся при анализе на зольность сжиганием топлива в лабораторных условиях.

Важными свойствами золы являются ее абразивность и характеристики плавкости. Зола с высокой абразивностью вызывает сильный износ конвективных поверхностей нагрева теплогенераторов.

Плавкость золы определяется нагреванием в специальной печи в полувосстановительной газовой среде трехгранной пирамидки стандартных размеров высотой 13 мм и длиной грани ее основания 6 мм, сделанной из измельченной пробы испытуемой золы (ГОСТ 2057-49).

Различают следующие характеристики плавкости золы:

t 1 - температура начала деформации, при которой пирамидка сгибается или вершина ее закругляется;

t 2 - температура начала размягчения, при которой вершина пирамидки

наклоняется до ее основания или пирамидка превращается в шар;

t 3 - температура начала жидкоплавкого состояния, при которой пирамидка

растекается на подставке;

t 0 - температура начала истинно жидкого состояния, при котором расплав

шлака подчиняется законам Ньютона о течении истинной жидкости.

По характеристикам плавкости золы энергетические угли подразделяются на три группы: с легкоплавкой золой t 3 <1350 °С, с золой средней плавкости

1350< t 3 <1450 °С и с тугоплавкой золой t 3 >1450 °С.

Присутствие золы в топливе существенно понижает его ценность и вызывает трудности в процессе его сжигания. Летучая зола, уносимая в газоходы котлоагрегата истирает и загрязняет поверхности нагрева, ухудшая коэффициент теплопередачи. Выпавшая в котлоагрегатах зола и шлак требуют специальных мероприятий по их удалению.

Углерод . Углерод представляет одну самых существенных составляющих каждого топлива и входит в его состав не свободном состоянии, а виде сложных органических соединений с водородом, кислородом, серой и азотом. При горении чистый углерод выделяет 8130ккал\кг (34,4 МДж/кг) и является главным источником теплотворной способности топлива. Содержание углерода в некоторых твердых топливах достигает 95 %.

Водород . Другой важной составляющей топлива является водород, содержание которого в горючей массе твердых и жидких топлив колеблется от 2 до 10%. Много водорода содержится в природном газе, мазуте и горючих сланцах, меньше всего в антраците. По теплотворной способности водород почти в 4 раза превосходит углерод и его теплота сгорания в водяной пар - составляет 10,8 МДж/м 3 (2579 ккал/м 3).э

Сера . Содержание серы в твердых топливах за исключением сланцев невелико. При сгорании сера выделяет незначительное количество тепла. Сера в топливе содержится в трех разновидностях. Органическая сера S 0 и колчеданная Sк составляют так называемую горючую летучую серу:

S л = S 0 + Sк [%]

Третьей разновидностью серы является сера сульфатная – S а, которая уже окислена и поэтому не может выделять тепла, вследствие чего входит в состав золы топлива в виде минеральных соединений с железом и кальцием. Общее содержание серы в топливе составляет

Sоб = Sл + Sа [%]

Органическая сера входит в состав сложных высокомолекулярных органических соединений топлива. Колчеданная сера представляет собой ее соединения с металлами, чаще с железом (FeS_2 - железный колчедан), и входит в минеральную часть топлива. Органическая и колчеданная сера S л _при горении топлива окисляется с выделением тепла. Сульфатная сера входит в минеральную часть топлива в виде сульфатов CaS0 4 и FeS0 4 и поэтому в процессе горения дальнейшему окислению не подвергается. Сульфатные соединения серы при горении переходят в золу. В горючую массу топлива входят S o и S к, которые при сгорании топлива переходят в газообразные соединения SO 2 , и в небольшом количестве в SO 3 .

Содержание серы в твердых топливах обычно невелико. В нефти сера входит в состав неорганических соединений, в природных газах она практически отсутствует, в попутных газах некоторых нефтяных месторождений содержится немного серы в виде сероводорода H 2 S и сернистого газа SO 2 . Образующийся при горении топлива сернистый газ и особенно сопутствующий ему в небольшом количестве серный газ SO 3 вызывают коррозию металлических частей теплогенераторов и отравляют окружающую местность. Вследствие низкой теплоты сгорания - 9,3 МДж/кг (2220ккал/кг) присутствие серы уменьшает теплоту сгорания топлива. Поэтому сера является вредной и нежелательной примесью топлива.

Азот и кислород относятся к внутреннему балласту топлива. Азот является инертным газом. Содержание его в твердом топливе составляет 1-2% и при сгорании топлива он выделяется в свободном состоянии.

Содержание кислорода в топливе колеблется в широких пределах, достигая 40%. Принято считать что весь кислород в топливе связан с водородом и при сгорании топлива образуют водяные пары. Кроме того, кислород, находясь в соединении с водородом или углеродом топлива, переводит некоторую часть горючих в окислившееся состояние и уменьшает его теплоту сгорания. Содержание кислорода велико в древесине и торфе. Азот при сжигании топлива в атмосфере воздуха не окисляется и переходит в продукты сгорания в свободном виде.



Понравилась статья? Поделитесь с друзьями!