Дать определение молекулы. Что такое атом и молекула? Классическая теория химического строения

Атомы - это маленькие частицы, из которых состоит вещество. Невозможно даже представить себе, насколько они малы. Если сложить в цепочку сто миллионов атомов, у нас получится ниточка длиной всего лишь в 1 см. В тонком листе бумаги, наверное, не меньше миллиона слоев атомов. Науке известно более ста видов атомов; соединяясь друг с другом, они образуют все окружающие нас вещества.

Представление об атомах

Мысль о том, что всё в природе состоит из атомов, возникла давно. Еще 2500 лет назад древнегреческие философы полага­ли, что вещество состоит из таких частиц, которые нельзя разделить. Само слово «атом» восходит к греческому слову «атомос», что значит «неделимый». В Древней Греции (см. статью « «) философы обсуждали гипотезу о том, что всё вещество в мире состоит из неделимых частиц. Правда, Аристотель в этом сомневался.

Термин «атом» был впервые использован английским химиком Джоном Даль­тоном (1766- 1844). В 1807 г. Дальтон выдвинул свою атомную теорию. Атомами он назвал составляющие всякое вещество малые частицы, которые не изменяются входе химических реакций. Согласно Дальтону, - это процесс, при котором атомы соединяются вместе или отделяются друг от друга. Атомная теория Дальтона лежит в основе представлений современных ученых.

В начале нашего столетия ученые начали строить модели атомов. Эрнест Резерфорд (1871 - 1937) показал, что отрицательно заряженные электроны обращаются вокруг положительно заряженного ядра. Нильс Бор (1885 - 1962) утверждал, что электроны обращаются по определенным орбитам. В 1932 г. Джеймс Чедвик (1891 - 1974) установил, что ядро атома состоит из частиц, которые он назвал протонами и нейтронами .

Атомы состоят из еще меньших, чем они сами, частиц, называемых элементарными . Центром атома является его ядро. Оно состоит из элементарных частиц двух видов - протонов и нейтронов. Есть в атоме также другие элементарные частицы - электроны ; они вращаются вокруг ядра. Существует множество разных элементарных частиц. Ученые считают, что протоны и нейтроны состоят из кварков . Элементарные частицы, входящие в состав атома, удерживают­ся вместе благодаря своим электрическим зарядам. Протоны заряжены положительно, а электроны - отрицательно. Нейтроны заряда не имеют, т.е. являются электрически нейтральными. Частицы, несущие противоположные электрические заряды, притягиваются друг к другу. Притяжение отрицательно заряженных электронов к положительно заряженным протонам, находящимся в атомном ядре, удерживает электроны на орбитах около этого ядра. В состав атома входит одинаковое число положительно заряженных протонов и отрицательно заряженных электронов, и атом электрически нейтрален.
Электроны в атоме находятся на разных энергетических уровнях, или оболочках. Каждая оболочка состоит из определенно­го числа электронов. Когда очередная оболочка заполняется, новые электроны попа­дают на следующую оболочку. Большую часть объема атома занимает пустое пространство между элементарными частицами. Отрицательно заряженные электроны удерживаются на своих энергетических уровнях силой притяжения к положительно заряженным протонам ядра.

Строение атома часто описывают строгой диаграммой, однако сегодня ученые полагают, что электроны существуют на своих орбитах в размытом состоянии. Это представление отражено на рисунке, где электронные орбиты представлены в виде «облаков». Так вы бы увидели молекулу под электронным микроскопом. Равными показаны разные уровни плотности электронов. Бирюзовым цветом отмечена область наибольшей плотности.

Атомный номер и атомная масса

Атомный номер - это число протонов в атомном ядре. Как правило, в состав атома входит одинаковое число протонов и электронов, поэтому по атомному номеру можно судить и о том, сколько в атоме электронов. В разных атомах содержится разное количество протонов. В ядре атома фосфора 15 протонов и 16 нейтронов, значит, его атомный номер 15. В ядре атома золота 79 протонов и 118 нейтронов: следовательно, атомный номер золота 79.

Чем больше протонов и нейтронов имеет атом, тем больше его масса (величина, показывающая количество вещества в составе атома). Сумму числа протонов и числа ней­тронов мы называем атомной массой. Атомная масса фосфора - 31. При исчислении атомной массы электроны в расчет не принимаются, так как их масса ничтожно мала по сравнению с массой атома. Существует особый прибор - масс-спектрометр . Он позволяет определить для каждого данного атома его массу.

Изотопы

У большинства элементов существуют изотопы, атомы которых имеют несколько отличное строение. Количество протонов и электронов в атомах изотопов одного всегда неизменно. Атомы изотопов различаются числом нейтронов в ядре. Следовательно, у всех изотопов одного элемента один и тот же атомный номер, но разная атомная масса. На этом рисунке вы видите три изотопа углерода. У изотопа С 12 есть 6 нейтронов и 6 протонов. С 13 имеет 7 нейтронов. В ядре изотопа С 12 восемь нейтронов и 6 протонов.

Физические свойства изотопов различны, но они обладают одинаковыми химическими свойствами. Обычно большая часть атомов элемента (вещества, состоящего из атомов одного вида) принадлежит к одному изотопу, а другие изотопы встречаются в меньших количествах.

Молекулы

Атомы редко встречаются и свободном состоянии. Как правило, они связываются друг с другом и образуют молекулы либо другие, более массивные структуры. Молекула - это мельчайшая частица вещества, которая может существовать самостоятельно. Она состоит из атомов, удерживающихся вместе при помощи связей. Например, у молекулы два атома связанны с атомом кислорода. Атомы удерживаются вместе благодаря зарядам частиц, из которых они состоят. Описывая строение молекул, ученые прибегают к помощи моделей . Как правило, они пользуются структурными и пространственными моделями. Структурные модели представляют связи, удерживающие атомы вместе, в виде палочек. В пространственных моделях атомы плотно соединены друг с другом. Конечно, модель не похожа на настоящую молекулу. Модели строятся для того, что­бы показать, из каких атомов та или иная молекула состоит.

Химические формулы

Химическая формула вещества показывает, сколько атомов каких элементов входит в состав одной молекулы. Каждый атом обозначается символом. Как правило, в качестве символа выбирается первая буква английского, латинского или арабского названия элемента. Например, молекула углекислою газа состоит из двух атомов кислорода и одного атома углерода, поэтому формула угле­кислого газа СО 2 . Двойка Атомы обозначает число атомов кислорода в молекуле.

Этот опыт продемонстрирует вам, что молекулы вещества удерживают­ся вместе силами притяжения. На­полните стакан водой до краев. Осторожно опустите в стакан несколько монет. Вы увидите, что над краями стакана приподнялся водяной купол. , притягивающая молекулы воды друг к другу, может удержать некоторое количество воды над краями стакана. Эта сила называется силой поверхностного натяжения .

В первый раз слово «молекула» большинство из нас услышали в школе на уроках природоведения. Это одно из основополагающих понятий современной химии, которое сделало возможным дальнейшее познание окружающей среды.


Что же такое молекула, из чего она состоит и зачем вообще нужно изучать молекулы?

Откуда взялось слово «молекула»?

Как и большинство химических терминов, слово «молекула» имеет в основе латынь. Оно образовано из двух слов: «мoles», имеющего значение массы, тяжести и «-cule» — уменьшительного суффикса. Дословное значение – маленькая масса.

В современной химии молекула – мельчайшая частица какого-либо вещества. Даже одна молекула любого вещества обладает всеми свойствами, которые характерны для этого вещества.

Если молекулу разделить на составные части, вещество, которое она составляла, уничтожится, распавшись на более простые элементы – атомы. На этой основе сформирован весь свод понятий, образующих современную химическую науку и практику.

Из чего состоит молекула?

Как здание состоит из кирпичиков, а любой механизм, сделанный человеком – из деталей, так и молекула состоит из простых «кирпичиков» — атомов химических элементов.


Некоторые молекулы состоят всего из одного атома – например, молекулы металлов. Но подавляющее большинство веществ, которые нас окружают, имеют гораздо более сложное молекулярное строение.

Строение любой молекулы можно записать в виде химической формулы, которая указывает, из атомов каких химических элементов состоит вещество и сколько атомов каждого вещества содержится в одной молекуле. Молекула кислорода состоит из двух одинаковых атомов элемента кислорода.

Всем известна формула воды: H2O, которая означает, что каждая молекула воды содержит один атом кислорода и два атома водорода. Еще одна известная буквально всем формула – С2Н5ОН, формула этилового спирта, которая показывает, что это вещество состоит из двух атомов углерода (С), шести атомов водорода (Н) и одного атома кислорода (О).

В процессе взаимодействия друг с другом вещества обмениваются химическими элементами, вступая в реакции. При этом образуются новые вещества, обладающие новыми свойствами, отличными от свойств исходных веществ.

Так, уголь (практически полностью состоящий из углерода), сгорая (взаимодействуя с кислородом, содержащимся в воздухе), образует углекислый газ – вещество, непригодное для дыхания, в отличие от кислорода.


Молекулы в обычном состоянии не несут электрического заряда и называются нейтральными. Те молекулы, которые получают положительный или отрицательный заряд, называются ионами, а процесс – ионизацией. Молекулы, атомы которых имеют неспаренные электроны, называются радикалами.

Чему равна масса молекулы?

Конечно, таких чувствительных весов, которые позволяли бы взвесить одну молекулу вещества, не существует в арсенале современной науки. Масса молекул и атомов вычисляется другими способами. Принято считать, что масса молекулы любого вещества равна сумме масс всех атомов, из которых состоит это вещество.

Но как узнать, сколько весит атом? Это можно узнать из Периодической таблицы элементов Менделеева, где указана масса каждого элемента. Правда, указана не в привычных нам килограммах, а в специальных единицах атомной массы.


Одна атомная единица массы (а.е.м.) равна 1/12 массы атома углерода, что в численном выражении равно 1,660*10-27 кг.

Молекула (франц. molecule, от лат. moles - масса) - это наименьшая способная к самостоятельному существованию частица вещества, обладающая его химическими свойствами.

Учение о строении и свойствах молекул приобрело исключительный интерес для познания субмикроскопической структуры клеток и тканей, а также механизма биологических процессов на молекулярном уровне. Большие успехи в изучении структуры молекул и, в частности, молекул таких биополимеров, как белки и нуклеиновые кислоты, показали, что важнейшие функции этих веществ в организмах осуществляются на уровне отдельных молекул и поэтому должны исследоваться как молекулярные явления. Установлено, например, что такие функции белков, как ферментативная, структурная, сократительная, иммунная, транспортная (обратимое связывание и перенос жизненно необходимых веществ) разыгрываются на молекулярном уровне и непосредственно определяются структурой и свойствами молекул этих веществ. Наследственность и изменчивость организмов связаны с особой структурой и свойствами молекул нуклеиновых кислот, в которых зафиксирована вся генетическая информация, необходимая для синтеза белков организма. Небольшие отклонения в структуре или составе молекул ряда биологически важных веществ или изменения в молекулярном механизме некоторых обменных процессов являются причиной возникновения ряда заболеваний (например, серповидноклеточная анемия, наследственная галактоземия, сахарный диабет и др.), называемых молекулярными болезнями.

Молекула каждого вещества состоит из определенного числа атомов (см.) одного химического элемента (простое вещество) или различных элементов (сложное вещество), объединенных посредством химических (валентных) связей. Состав молекулы выражают химической формулой, в которой знаки элементов указывают вид атомов, образующих молекулу, а числа, стоящие справа внизу, показывают, сколько атомов каждого элемента входит в состав молекулы. Так, из химической формулы глюкозы С 6 H 12 O 6 следует, что молекула глюкозы состоит из 6 атомов углерода, 12 атомов водорода и 6 атомов кислорода. Молекулы инертных газов и паров некоторых металлов одноатомны. Это самые простые молекулы. Наиболее сложными являются молекулы белков (см.), нуклеиновых кислот (см.) и других биополимеров, состоящие из многих тысяч атомов.

Для нахождения химической формулы молекулы необходимо определить приблизительный молекулярный вес (см.) исследуемого вещества и простейшую (эмпирическую) формулу его молекулы. Последнюю выводят из процентного состава данного вещества и атомных весов (см.) химических элементов, входящих в состав этого вещества. Так, например, химическим анализом установлено, что бензол состоит из 92,26% углерода и 7,74% водорода. Отсюда следует, что отношение числа атомов углерода к числу атомов водорода в молекуле бензола равно:

где 12,011 и 1,008 - атомные веса углерода и водорода соответственно. Следовательно, простейшая формула бензола должна быть СН. Сопоставляя простейшую формулу бензола с его приблизительным молекулярным весом (78,1), найденным опытным путем, определяют его действительную, или истинную, формулу С 6 Н 6 .

Размеры молекул выражают в А. Так например, диаметр молекулы воды, предполагая, что она имеет сферическую форму, составляет 3,8 А. Молекулы высокомолекулярных веществ значительно больше, например линейные размеры больших и малых осей палочковидных молекул фибриногена быка равны 700 и 40 А, а вируса табачной мозаики - 2800 и 152 А соответственно. Мерой относительной массы молекулы является молекулярный вес (см.), величина которого колеблется от нескольких единиц до миллионов.

Последовательность, в которой атомы связаны в молекуле (химическое строение молекул по А. М. Бутлерову), изображают так называемыми структурными формулами. Например, химическое строение уксусной кислоты С 2 Н 4 O 2 представляют следующей структурной формулой:

где каждая линия обозначает единицу валентности (см.), число линий, подходящих к атому, равно его валентности в данном соединении.

Химическое строение молекулы, находимое на основании определения молекулярного веса, химического состава и изучения химических свойств исследуемого вещества и окончательно подтверждаемое его синтезом из веществ, химическое строение которых известно, является важным фактором, определяющим свойства вещества, в частности его фармакологическое действие, токсичность и биологические функции. Различие в свойствах изомеров (см. Изомерия) является примером зависимости свойств веществ от химического строения их молекул. Атомный состав молекул изомеров одинаков, так, например, диметиловый эфир и этиловый спирт, будучи изомерами, имеют одинаковые химические формулы С 2 Н 6 O, однако структурные формулы их различны:

чем и объясняются их различные свойства.

Способность атома образовывать то или иное число химических связей с другими атомами в молекулах называют валентностью данного атома. При образовании химической (валентной) связи происходит перегруппировка внешних (валентных) электронов взаимодействующих атомов, в результате которой внешние электронные оболочки атомов в молекуле приобретают устойчивую структуру, свойственную атомам инертных газов (см.) и состоящую обычно из восьми электронов (электронный октет). В зависимости от способа перегруппировки валентных электронов различают несколько основных типов химических связей.

Ионная (электровалентная) связь возникает между атомами элементов, сильно различающихся по химическим свойствам, например между атомами щелочных металлов и атомами галогенов. При этом атом металла отдает электрон атому галогена (рис. 1).


Рис. 1. Образование молекулы хлористого натрия.

Атом, отдающий электрон, становится положительно заряженным ионом. Атом, принимающий электрон, становится отрицательно заряженным ионом. Возникающие таким путем противоположно заряженные ионы взаимно притягиваются, образуя молекулу. Молекулы и соединения с ионными связями (например, соли и окислы металлов первой и второй групп периодической системы элементов) называются гетерополярными. Ионная связь характеризуется большой прочностью (энергия связи), т. е. работой, необходимой для разрыва молекулы на отдельные ионы.

Ковалентная (атомная) связь возникает при взаимодействии одинаковых или близких по свойствам атомов. При этом каждый из соединяющихся атомов отдает по одному или по нескольку валентных электронов на образование пары (или нескольких пар электронов), которая становится общей для обоих атомов. Обобщенная пара электронов, охватывая в своем движении ядра соединяющихся атомов, удерживает их один возле другого. К молекулам с ковалентной связью относятся молекулы простых газов, окислов и водородных соединений не металлов и многих органических соединений:

Точками обозначены электроны, находящиеся на внешних электронных оболочках атомов, химическими знаками - ядра атомов со всеми электронными оболочками, кроме внешних. Пара электронов, связывающих атомы, соответствует валентной черте в обычных структурных формулах.

Молекулы, в которых электрические центры тяжести отрицательных (электроны) и положительных (ядра атомов) зарядов совпадают, называют гомеополярными. К ним относятся, например, молекулы простых газов, углеводородов. Если электрические центры тяжести отрицательных и положительных зарядов в молекулах не совпадают, молекулы называют полярными (например, молекулы воды, аммиака, галогеноводородов, спиртов, кетонов, альдегидов, эфиров). Полярная молекула ведет себя как диполь, т. е. система из двух электрических зарядов е+ и е- , одинаковых по величине, но противоположных по знаку, расположенных на пекотором расстоянии h один от другого (рис. 2).


Рис. 2. Схема диполя.

Произведение e·h=μ называют дипольным моментом молекулы. Последний является мерой полярности молекулы. Вещества, состоящие из полярных молекул, имеют более высокие температуру кипения, теплоемкость, теплоту парообразования и поверхностное натяжение, чем вещества, состоящие из гомеополярных молекул. Взаимодействие между полярными молекулами является одной из причин ассоциации молекул в жидкостях, а взаимодействие полярных молекул растворителя с полярными молекулами или ионами растворенного вещества - сольватации последних. Скорость диффузии полярных молекул через мембрану клеток меньше таковой для гомеополярных молекул.

Координационная (семиполярная, донорно-акцепторная) связь - это разновидность ковалентной связи, возникает между атомами, входящими в состав разных молекул, у одного из которых имеется неподеленная пара электронов, а у другого не хватает двух электронов для образования устойчивой внешней электронной оболочки. Такого рода связи характерны для комплексных соединений. Так, например, соединение молекулы аммиака NH 3 с молекулой фтористого бора BF3 в комплексную молекулу аммиаката фтористого бора осуществляется неподеленной парой электронов азота

Атом азота служит донором, атом бора акцептором электронной пары.

Водородная связь осуществляется между атомом водорода, ковалентно связанным с атомом F, О или N, и атомами F, О или N, находящимися в других молекулах. Прочность водородной связи невелика (5-10 ккал/моль), однако достаточна для образования ассоциаций молекул в жидкостях и растворах. В воде, например, такие ассоциации имеют следующее строение (водородные связи обозначены пунктиром):

Водородные связи возникают не только между молекулами, но и между атомами внутри одной и той же молекулы; это так называемые внутримолекулярные водородные связи (водородные мостики). Примером такой связи может служить водородная связь между атомом водорода и атомом кислорода в молекуле o-метилсалицилата:

Вследствие наличия этой связи свойства o-метилсалицилата резко отличаются от свойств m- и n-изомеров. Наличие водородных мостиков в молекулах нуклеиновых кислот, белков и других полимеров во многом определяет лабильность этих молекул. Водородные связи играют значительную роль в субмикроскопической структуре протоплазмы.

При помощи рентгено-, электроно-, нейтронографии, молекулярной спектроскопии и ядерного магнитного резонанса удалось установить пространственное расположение отдельных атомов в молекуле, т. е. геометрическую конфигурацию молекул ряда веществ, в том числе молекул биологически важных веществ.

Определение пространственной конфигурации молекул слагается из определения так называемые остова молекулы, т. е. пространственного расположения ядер образующих ее атомов, и распределения электронов в пределах данной молекулы.

Остов молекулы находят на основании данных о длине связи и величине валентных углов, определяемых с помощью указанных выше методов. Длина связи представляет собой расстояние между центрами двух атомов в молекуле, связанных друг с другом ковалентной связью. Меньший по величине угол, образуемый прямыми, соединяющими центры двух атомов А 1 и А 2 с центром третьего атома А 3 в данной молекуле, называют валентным углом. Остов молекулы не является абсолютно жестким. Например, в молекулах органических соединений атомы углерода могут вращаться около ординарных (простых) связей, при этом меняется взаимное положение ядер, но остаются постоянными последовательность соединения атомов в молекуле, длина связей и валентные углы. Такие различные формы молекул, возникающие в результате поворота атома углерода вокруг ординарной связи, называют конформациями. Различные конформации одной и той же молекулы легко и обратимо переходят друг в друга, чем объясняются отсутствие изомеров вращения и переход молекул в форму, наиболее соответствующую для протекания той или иной реакции.

Распределение электронов в молекулах находят главным образом с помощью теоретических расчетов, в основе которых лежат два основных принципа квантовой химии. Первый из них утверждает, что электроны в атомах и молекулы могут находиться лишь на дискретных и совершенно определенных энергетических уровнях. Согласно второму принципу электроны в атомах и молекулы нельзя рассматривать как точечные частицы, положение и скорость которых в молекуле (или атоме) можно точно определить для каждого момента времени. В действительности, как учит квантовая механика, можно определить лишь вероятность нахождения электрона в некоторых областях пространства в данный момент времени. Поэтому можно представить, что заряд электрона как бы «размазан» в определенной области пространства в виде электронного облака, распределение которого в пространстве определяется соответствующей математической функцией (называемой волновой функцией электрона или его молекулярной орбиталью (или атомной орбиталью, если его распределение определяют в атоме).

Выло показано, что не все электроны в молекуле одинаково существенны для ее химических свойств. Так, например, в молекуле с большим числом двойных связей, к которым относится подавляющее большинство соединений, играющих доминирующую роль в процессах жизнедеятельности, электроны можно разделить на два типа. К первому типу относятся σ-электроны, участвующие в образовании ординарных связей, ко второму - п-электроны, участвующие в образовании двойных связей. Первые образуют жесткий скелет молекулы и локализованы попарно между соседними атомами. Вторые образуют значительно более расплывчатое облако, охватывающее всю периферию молекулы. В таких молекулах все основные их свойства обусловлены п-электронами, которые более лабильны сравнительно с σ-электронами и поэтому с большей легкостью могут участвовать в различного рода процессах.

Молекулой называют наименьшую частицу вещества, обладающую его химическими свойствами.

Молекула состоит из атомов, а точнее, из атомных ядер, окруженных внутренними электронами, тогда как внешние, валентные электроны участвуют в образовании химических связей.

А, например, в случае инертных газов понятия атома и молекулы совпадают.

Каждая молекула имеет определенный качественный и количественный состав. Так, молекула воды состоит из атомов водорода и кислорода (качественный состав), причем в ней содержится один атом кислорода и два атома водорода (количественный состав). Иногда количественный состав молекул выражают в процентах (по массе): в Н2O-11,1% водорода и 88,9% кислорода.

Кроме состава молекулы характеризуются определенной структурой или строением. Часто термины «структура» и «строение» отождествляют, иногда же их различают, говоря о «ядерной структуре» и «электронном строении» молекул. Но в любом случае необходимо четко оговаривать, о чем идет речь: о взаимном расположении и перемещении атомных ядер или же о распределении электронной плотности.

Атомы в молекулах связаны в определенном порядке. Так, в молекуле аммиака NH3 каждый атом водорода соединен одной ковалентной связью с атомом азота; между самими водородными атомами химическая связь отсутствует (последнее, правда, не означает, что между химически несвязанными атомами отсутствует вообще всякое взаимодействие (см. Химическая связь). Наличие связей между одними атомами и отсутствие их между другими изображают в виде так называемых графических, или структурных, формул.

В последнее время в химической литературе все чаще употребляют термин «топология молекул». Топология - это раздел математики, изучающий свойства тел, не зависящие от их формы и размеров. Эти свойства называют неметрическими. Молекулы обладают как метрическими свойствами (длины химических связей, углы между ними и др.), так и неметрическими (молекула может быть циклической, скажем бензол, или нециклической, я-бутан; иметь центральный атом, окруженный лигандами,- PCl5, или представлять собой как бы «клетку» и т. д.). Под топологией молекулы понимают совокупность ее неметрических свойств.

Топология молекулярных систем тесно связана с их свойствами. Например, молекулы этанола и ди-метилового эфира топологически различны, что позволяет понять разницу в некоторых свойствах этих соединений (этанол может давать реакции с участием группы ОН и водорода этой группы, эфир - нет и т. д.). Но свойства молекул зависят не только от их топологии, но и от других факторов (геометрии молекулы, распределения электронной плотности в ней и др., см. Стереохимия).

В последние годы внимание ученых привлек новый класс молекулярных систем - так называемые нежесткие молекулы. Как известно, ядра в молекулах движутся. В силу резкого различия в массах ядер и электронов ядерные движения (колебания) происходят намного медленнее электронных, поэтому можно считать, что электроны в молекулах движутся в поле неподвижных атомных ядер. Конечно, такое допущение является приближением, которое называется адиабатическим. Для многих молекул, где ядра совершают небольшие по амплитуде колебания около определенных положений в пространстве, адиабатическое приближение вполне приемлемо. Такие молекулы называют структурно-жесткими, например СН4, Н2O и т. д. Однако есть молекулы, их называют нежесткими, в которых ядра совершают значительные перемещения. В подобных случаях понятие о неизменной равновесной геометрии молекулы теряет смысл. Например, в борогидриде лития LiBH4 катион Li+ как бы обращается вокруг аниона ВН4 (см. рис. на с. 146, в середине, справа). Разумеется, чтобы ион Li+ смог начать подобное «путешествие», молекула должна получить определенную энергию. Для нежестких молекул эта энергия невелика: для LiBH4 она составляет около 16 кДж/моль, т. е. во много раз меньше энергии химической связи. Другим примером нежесткой молекулы может служить аммиак NH3. Возвращаясь к «обычным», жестким молекулам, следует отметить, что при одном и том же составе они могут иметь различную топологию и геометрию, т. е. давать разного типа изомеры (см. Изомерия; Таутомерия).

Структура и даже состав молекул могут изменяться при изменении агрегатного состояния вещества и внешних условий, главным образом температуры и давления. Например, в газообразном оксиде азота (V) существуют отдельные молекулы N2O5, тогда как в твердом состоянии в узлах кристаллической решетки этого оксида находятся ионы NO2+ и NO3 , т. е. можно сказать, что твердый N2O5 - это соль - нитрат нитрония.

В твердом теле молекулы могут сохранять или не сохранять свою индивидуальность. Так, большинство органических соединений образуют молекулярные кристаллы, в узлах решеток которых находятся молекулы, связанные друг с другом относительно слабыми межмолекулярными взаимодействиями. В ионных (например, NaCl) и атомных (алмаз, графит) кристаллах нет отдельных молекул, и весь кристалл - это как бы одна гигантская молекула. Правда, в последнее время в теории твердого тела начали широко использовать молекулярные модели, однако это потребовало некоторого пересмотра понятия элементарной ячейки кристалла (см. Кристаллохимия).

Изучение строения и свойств молекул имеет фундаментальное значение для естествознания в целом.

Все вещества в природе состоят из очень маленьких частиц, называемых молекулами. Эти частички в веществе постоянно взаимодействуют между собой. Невооруженным взглядом нельзя их увидеть. Понятие, основные свойства и характеристики молекул мы и рассмотрим в статье.

Молекулами называются частицы, имеющие нейтральный электрический заряд и состоящие из различного количества атомов. Число их, как правило, всегда больше двух, и связаны эти атомы между собой ковалентной связью. Впервые о существовании молекул стало известно во Франции. За это нужно отдать должное физику Жану Перрену, который и совершил это великое открытие в 1906 году. Состав молекулы постоянен. Она не меняет его на протяжении всего своего существования. Строение этой маленькой частички зависит от того, какими физическими свойствами обладает образуемое ею вещество.


Каждая молекула индивидуальна тем, что атомы в ее составе наделены различными химическими взаимодействиями и конфигурациями, характерными для конкретного вещества. Связываются атомы валентно и невалентно. Благодаря валентности связей, частица обеспечивается базовыми характеристиками и постоянством. Невалентность связей оказывает большое влияние на характеристики молекул. Происходит это благодаря свойству вещества, состоящему из них.


Кроме того, в молекуле существуют двухцетровые связи и многоцентровые. Из последних наиболее распространены трех- и четырехцентровые.


Молекулы, по сути, являются подвижными системами, в них атомы вращаются вокруг ядра конфигурации, прибывающего в состоянии равновесия. А сами молекулы движутся хаотично. Если расстояние между ними большое, то они друг к другу притягиваются, а если интервал маленький, то тогда одна молекула отталкивает от себя другую.


В состав молекул входят частицы, называемые атомами . То, как они располагаются в этой частице, можно зафиксировать определенной структурной формулой. Передается молекулярный состав формулой брутто. К примеру, Н2О – это формула воды. Молекула этого вещества содержит в себе 2 атома водорода и 1 атом кислорода. O2 – это кислород, Н2CO3 – это угольная кислота. Встречаются и такие типы молекул, преобладание атомов в которых вычисляется ни единицами, ни десятками и даже ни сотнями, а тысячами. Эта особенность свойственна белковым частицам.


Изучением молекул в веществе занимается квантовая химия, теория о строении молекул. В ходе реакций, проводимых химиками между веществами, получаются сведения о строении и особенностях молекул. Не обходится здесь и без открытий в области квантовой физики, которые благотворно используются при исследовании этих частиц в науке.


При определении, из чего же состоит молекула, учеными применяются методики дифракционного типа. К ним относятся методики рентгеновского структурного исследования и нейтроновой дифракции. Это прямые формы методов. Также предполагается изучение молекул и другими научными способами.


Надеемся, что из этой статьи вы получили для себя много полезной и интересной информации о молекулах. Теперь вы точно знаете, что это за частица, и имеете представление о ее составе, основных свойствах и способах исследования молекул учеными в области химии.



Понравилась статья? Поделитесь с друзьями!