Как определить последовательность фаз в трехфазной цепи. Фазировка электрического оборудования

Для расчета токов должна быть задана схема цепи, значение и тип сопротивлений, напряжение источника энергии. Расчеты обычно проводят для комплексных значений.

Симметричная нагрузка в схеме соединением «звезда – звезда» с нулевым проводом представлена на рис. 4.8.

Если нулевой провод в схеме симметричного приемника (
) обладает весьма малым сопротивлением (Z 0 = 0), то потенциал точки О / практически равен потенциалу точки О, и точки сливаются в одну. В схеме образуются три обособленных контура, комплексные значения токов в каждом из которых определяются как в однофазной цепи
;
;

где Ė А, Ė В, Ė С – фазные напряжения на зажимах генератора.

По первому закону Кирхгофа ток в нулевом проводе 4-х проводной системы равен геометрической сумме фазных токов
.

В общем случае комплексное напряжение между нулевыми точками 0 – 0` при наличии нейтрального провода

.

При равномерной симметричной нагрузке ток I 0 =0, и нулевой провод может быть изъят из схемы без изменения ее режима работы. Для 3-х проводной системы, т.е. не содержащей нейтральный провод (Z N = ∞) слагаемое 1/ Z N в знаменателе будет отсутствовать.

При определении напряжения фаз приемника если не учитывать сопротивления источника, то
можно заменить на

Переходя к действующим значениям величин в случае, когда нагрузки во всех фазах равны и имеют активный характер ,

где
− значение линейного напряжения, токи соответственно принимают значения
,
,
.

Общая мощность трехфазной цепи с активной нагрузкой равна

.

4.4. Несимметричная нагрузка при соединении звездой

При несимметричной нагрузке и отсутствии нулевого провода между нулевыми точками генератора О и приемника О / появляется напряжение , в результате чего фазные напряжения приемника оказываются различными. Расчетные соотношение
между фазными и линейными напряжениями при этом нарушается. Для определения напряжения между нулевыми точками, а также фазных напряжений приемника предположим, что в электрической цепи имеется нейтральный (нулевой) провод, сопротивление которого
. Тогда напряжение между нулевыми точками источника и приемника

,

где g A , g B , g C , g N – проводимости фазных и нулевого проводов,

т

Рис. 3. 9. 3.10.

.е. для несимметричной системы при определении в знаменателе учитывается проводимость нейтрального провода g N ..

На рис. 4.9. приведена векторная диаграмма без нейтрального провода, на которой ,
,− векторы фазных напряжений источника, а
,
,
− векторы линейных напряжений источника, а также линейных напряжений приемника. Для построения вектора напряжения и векторов фазных напряжений приемника
,
,используем их значения, полученные выше.

Связь между фазными и линейными векторами
,
,и
,
,
, определяем выражениями
,
,
.

Векторная диаграмма построена для активной несимметричной нагрузки фаз (
).

При изменении величины фазных активных сопротивлений напряжение
может изменяться в широких пределах. В соответствии с этим точкаN на диаграмме может занимать различные положения, а фазовые напряжения приемника могут отличаться друг от друга весьма существенно.

Рассмотрим, частный случай несимметричной нагрузки, когда
. Поскольку
, то и
, получим
,
и
. ТочкаN на диаграмме переместится в точку С, напряжение возрастет до фазного напряжения источника, а напряжения
,
− до линейных напряжений.

При изменении фазных напряжений происходит изменение фазных токов и мощностей − «перекос фаз».

Если при несимметричной нагрузке нулевые точки источника и приемника соединить нулевым проводом, то поскольку сопротивление нулевого провода мало, (
и
), то фазные напряжения приемника получаются одинаковыми и сдвинутыми по фазе относительно друг друга на угол. Включение нулевого провода приводит к соответствующим изменениям векторной диаграммы электрической цепи. Так, если электрической цепи без нулевого провода соответствует векторная диаграмма, изображенная на рис.3.9. сплошной линией, то той же цепи при включении нулевого провода соответствует диаграмма, изображенная на том же рисунке пунктиром.

Вектор построен в соответствии с выражением.
.

При наличии нулевого провода в схемах с несимметричной нагрузкой, так же как и в случае с симметричной нагрузкой остается в силе соотношение

.

На основании изложенного можно сделать вывод, что нулевой провод необходим для того, чтобы при несимметричной нагрузке выравнивать фазные напряжения приемника, т.е. получать во всех фазах приемника одинаковые напряжения, равные .

Фазные токи, углы сдвига фаз между фазовыми напряжениями и токами, а также фазные мощности при несимметричной нагрузке в цепи с нулевым проводом будут в общем случае различными. Они могут быть определены по следующим формулам:
,
,
.

Углы сдвига фаз между фазными токами и напряжениями зависят от величины и характера сопротивлений фаз приемника и равны

,
,
.

Мощности для фазы «А» равны

Активная и реактивная мощности трехфазного приемника при соединении звездой
,
.

Если кроме фазных токов требуется найти ток в нулевом проводе, то задачу следует решать в комплексной форме. При этом необходимо прежде всего выразить в комплексной форме то
,
,

Ток в нулевом проводе можно определить также по векторной диаграмме, не прибегая к решению задачи в комплексной форме.

В нашем садоводческом товариществе установили трёхфазный электросчётчик с трансформатором тока. Счетчик был новый со всеми пломбами. Однако при полностью отключенной нагрузке диск счётчика медленно вращается, то есть у счётчика обнаружился «самоход». Понятно, платить товариществу за учитываемую счетчиком энергию, которую оно фактически не использовало, не хотелось.

Сначала решили, что счетчик неисправен. Заменяли счетчики несколько раз, но «самоход» оставался. В результате пришли к другому выводу - счетчик не виноват. Стали думать, что же вызывает подобный «самоход»? В заводской инструкции, приложенной к трёхфазному счетчику, записано: подключать счётчик к сети необходимо, соблюдая последовательность чередования фаз, чтобы фаза А сети была бы подключена к первому зажиму счётчика, фаза В - ко второму, а фаза С - к третьему зажиму счётчика.


.

Последовательность чередования фаз легко установить с помощью фазоуказателя. Таковой всегда имеется на электростанциях, в электрохозяйствах крупных заводов, но откуда ему быть в садоводческих товариществах? Наша попытка заполучить фазоуказатель на прокат на пару дней в крупном учреждении не удалась. Пришлось самим изготовить «Устройство для определения последовательности чередования фаз» , с помощью которого удалось определить эту правильную последовательность. В результате после устранения нарушения последовательности чередования фаз «самоход» счётчика исчез. Стало быть, отпала нужда платить за неиспользованную садоводами энергию.

Устройство для определения последовательности чередования фаз в трехфазной сети

Итак, вышеупомянутое «Устройство для определения последовательности чередования фаз» предназначено для определения фазы, в которой напряжение отстаёт от напряжения в фазе, произвольно взятой для начала отсчёта. Знание этого отставания необходимо для правильного подключения к сети приборов, в которых требуется соблюдать последовательность чередования фаз, например, трёхфазных четырёхпроводных (с нулем) электросчетчиков.

Конструкция устройства достаточно простая (рис. 1). На основании из электроизоляционного материала, например текстолита, размещены два настенных электропатрона с ввинченными в них обычными осветительными лампами накаливания, закрытыми прозрачными кожухами, изготовленными из пластиковой тары от соков, воды и т. д. На основании укреплены также конденсатор и клеммы для подключения проводов.

Одни выводы от ламп и конденсатора спаяны (точка О), другие концы проводов соединены с клеммами А, В и С (рис. 2).

Принцип действия «Устройства для определения последовательности чередования фаз» таков. При подключении «Устройства...» к трехфазной сети из-за наличия конденсатора в каждой фазе изменяется напряжение, что приводит к разному накалу ламп. (В нашем случае к конденсатору подсоединена фаза В.) По величине накала (яркости свечения ламп) и судят о принадлежности оставшихся фаз (проводов) к фазе А или к фазе С.

Краткая историческая справка

Исторически первым явление вращающегося магнитного поля описал , и датой этого открытия принято считать 12 октября 1887 года, - момент подачи ученым заявок на патенты, касающиеся асинхронного двигателя и технологии передачи электроэнергии. 1 мая 1888 года в США, Тесла получит свои главные патенты - на изобретение многофазных электрических машин (в том числе на асинхронный электродвигатель) и на системы передачи электрической энергии посредством многофазного переменного тока.

Сутью новаторского подхода Тесла к данному вопросу явилось его предложение строить всю цепочку генерации, передачи, распределения и использования электроэнергии как единую многофазную систему переменного тока, включающую в себя и генератор, и линию передачи, и двигатель переменного тока, который Тесла называл тогда «индукционным».

На европейском континенте, параллельно изобретательской деятельности Тесла, аналогичную задачу решал Михаил Осипович Доливо-Добровольский, работа которого была направлена на оптимизацию способа широкомасштабного использования электроэнергии.

На основе технологии двухфазного тока Николы Тесла, Михаил Осипович самостоятельно разработал трёхфазную электрическую систему (как частный случай многофазной системы) и асинхронный электродвигатель совершенной конструкции - с ротором типа «беличья клетка». Патент на двигатель Михаил Осипович получит 8 марта 1889 года в Германии.

Симметричный приемник имеет одинаковые сопротивления в каждой из своих фаз. Напряжение между нейтральными точками равно нулю, сумма фазных напряжений равна нулю и ток в нейтральном проводнике равен нулю.

Таким образом для симметричного приемника соединенного «звездой» наличие нейтрали не влияет на его работу. Но соотношение между линейными и фазными напряжениями остаются в силе:

Несимметричный приемник, соединенный по схеме «звезда», в отсутствие нейтрального проводника будет обладать максимальным напряжением смещения нейтрали (проводимость нейтрали нулевая, сопротивление - бесконечность):

Максимальны в этом случае и искажения фазных напряжений приемника. Векторная диаграмма фазных напряжений источника, с построением напряжения нейтрали, отражает данный факт:

Очевидно, при изменении величин или характера сопротивлений приемника, величина напряжения смещения нейтрали варьируется в широчайших пределах, и нейтральная точка приемника на векторной диаграмме может располагаться в самых разных местах. При этом фазные напряжения приемника будут значительно различаться.

Вывод: симметричная нагрузка допускает удаление нейтрального провода без влияния на фазные напряжения у приемника; несимметричная нагрузка при удалении нейтрального проводника сразу ведет к устранению жесткой связи между напряжениями приемника и напряжениями фаз генератора, - на напряжения нагрузки влияют теперь только линейные напряжения генератора.

Несимметричная нагрузка приводит к несимметрии фазных напряжений на ней, и к смещению нейтральной точки дальше от центра треугольника векторной диаграммы.

Нейтральный провод поэтому необходим для выравнивания фазных напряжений приемника в условиях его несимметричности или при подключении к каждой из фаз однофазных приемников, рассчитанных на фазное, а не на линейное напряжение.

По этой же причине нельзя в цепь нейтрального провода устанавливать предохранитель, так как в случае разрыва нейтрального провода на фазных нагрузках возникнет тенденция .

Расчеты для «треугольника»

Теперь рассмотрим соединение фаз приемника по схеме «треугольник». На рисунке показаны выводы источника, причем нейтральный провод отсутствует, да и присоединять его здесь некуда. Задача при такой схеме соединения обычно заключается в том, чтобы вычислить фазные и линейные токи при известных напряжении источника и фазных сопротивлениях нагрузки.

Напряжения между линейными проводами - это и есть фазные напряжения при соединении нагрузки «треугольником». Исключая из рассмотрения сопротивления линейных проводов, линейные напряжения источника приравниваем к линейным напряжениям фаз потребителя. Фазные токи замыкаются по комплексным сопротивлениям нагрузки и по проводам.

За положительное направление фазного тока принимают направление соответствующее фазным напряжениям, от начала - к концу фазы, а для линейных токов - от источника - к приемнику. Токи в фазах нагрузки находятся по закону Ома:

Здравствуйте, уважаемые гости и постоянные читатели сайта «Заметки электрика».

Несколько дней назад мне позвонил знакомый с просьбой разобраться в ситуации.

У него на объекте работала бригада электромонтажников.

Они занимались установкой двух силовых масляных трансформаторов 10/0,4 (кВ) мощностью 400 (кВА). С каждого трансформатора питались сборные шины 1 и 2 секций 0,4 (кВ). Между сборными шинами 1 и 2 секций был предусмотрен межсекционный автоматический выключатель.

Вот фото двух секций напряжением 400 (В).

При пусконаладочных работах решили попробовать включить оба трансформатора на параллельную работу. При включении произошло , при котором сработала защита сразу на двух вводных автоматических выключателях.

Стали разбираться. Условия включения трансформаторов на параллельную работу были соблюдены, но не все. Пришли к выводу, что не была соблюдена фазировка шин двух секций 400 (В). Бригада монтажников уверяет, что предварительную фазировку провела правильно. Чуть позже выяснилось, что фазировку они проводили с помощью фазоуказателя ФУ-2 на каждой секции и в обоих случаях прибор показал прямую последовательность фаз.

Фазоуказатель ФУ-2

Порядок чередования фаз (следования фаз) в трехфазной системе напряжений можно проверить с помощью переносного индукционного фазоуказателя типа ФУ-2. Вот так он выглядит.

Например, у счетчика СА4-И678 при обратной последовательности фаз начинается «самоход» диска. В современных электронных счетчиках типа СЭТ-4ТМ и ПСЧ-4ТМ при обратном чередовании фаз выдается на экран уведомление.

P.S. В следующих статьях мы поговорим о правильности проведения фазировки. Подписывайтесь на новости сайта, чтобы не пропустить выпуски новых статей.

Попалась на глаза история о монтаже электрооборудования, а именно двух масляных трансформаторов. Работы были завершены успешно. В итоге имелась следующая схема электроснабжения. Собственно сами трансформаторы, вводные выключатели, секционные разъединители, две секции шин. Успешно, как считали монтажники, прошли пусконаладочные работы . Стали включать оба трансформатора на параллельную работу и получили. Естественно, монтажники утверждали, что произвели проверку чередования фаз с обоих источников и все совпадало. Но, о фазировке не было сказано ни слова. А зря! Теперь давайте разберемся подробно, что же пошло не так.

Что собой представляет чередование фаз?

Как известно, в трехфазной сети присутствует три разноименные фазы. Условно они обозначаются как А, В и С. Вспоминая теорию, можно говорить что синусоиды фаз смещены относительно друг друга на 120 градусов. Так вот всего может быть шесть разных порядков чередования, и все они делятся на два вида – прямое и обратное. Прямым чередованием считается следующий порядок – АВС, ВСА и САВ. Обратный порядок будет соответственно СВА, ВАС и АСВ.

Чтобы проверить порядок чередования фаз можно воспользоваться таким прибором, как фазоуказатель. О том, мы уже рассказывали. Конкретно рассмотрим последовательность проверки прибором ФУ 2.

Как выполнить проверку?

Сам прибор (предоставлен на фото ниже) представляет собой три обмотки и диск, который вращается при проверке. На нем нанесены черные метки, которые чередуются с белыми. Это сделано для удобства считывания результата. Работает прибор по принципу асинхронного двигателя.

Итак, подключаем на выводы прибора три провода от источника трехфазного напряжения . Нажимаем кнопку на приборе, которая расположена на боковой стенке. Увидим, что диск начал вращаться. Если он крутится по направлению нарисованной на приборе стрелки, значит, чередование фаз прямое и соответствует одному из вариантов порядка АВС, ВСА или САВ. Когда диск будет вращаться в противоположную стрелке сторону, можно говорить об обратном чередовании. В таком случае возможен один из таких трех вариантов – СВА, ВАС или АСВ.

Если возвращаться к истории с монтажниками, то все что они сделали – это лишь определение чередования фаз. Да, в обоих случаях порядок совпал. Однако нужно было еще проверить фазировку. А ее невозможно выполнить с помощью фазоуказателя. При включении были соединены разноименные фазы. Чтобы узнать где условно А, В и С, нужно было применить мультиметр или.

Мультиметром измеряется напряжение между фазами питания и если оно равно нулю, то фазы одноименные. Если же напряжение будет соответствовать линейному напряжению, то они разноименные. Это самый простой и действенный способ . Более подробно о том, вы можете узнать в нашей статье. Можно, конечно, воспользоваться осциллографом и смотреть по осциллограмме какая фаза от какой отстает на 120 градусов, но это нецелесообразно. Во-первых, так на порядок усложняется методика, и во-вторых такой прибор стоит немалых денег.

На видео ниже наглядно показывается, как проверить чередование фаз:

Когда нужно учитывать порядок?

Проверить чередование фаз нужно при эксплуатации трехфазных электродвигателей переменного тока . От порядка фаз будет меняться направление вращения двигателя, что иногда бывает очень важно, особенно если на участке находится много механизмов, использующих двигатели.


Также важно учитывать порядок следования фаз при подключении электросчетчика индукционного типа СА4. Если порядок будет обратный возможно такое явление как самопроизвольное движение диска на счетчике. Новые электронные счетчики, конечно, нечувствительны к чередованию фаз, но на их индикаторе появится соответствующее изображение.

Если имеется электрический силовой кабель , с помощью которого необходимо выполнить подключение трехфазной сети питания, и нужен контроль фазировки, выполнить его можно и без специальных приборов. Зачастую жилы внутри кабеля отличаются по цвету изоляции, что сильно упрощает процесс «прозвонки». Так, чтобы узнать где условно находится фаза А, В или С понадобится лишь. На двух концах мы увидим жилы одинакового цвета. Их мы и примем за одинаковые. Подробнее о вы можете узнать из нашей статьи.


В нашем садоводческом товариществе установили трёхфазный электросчётчик с трансформатором тока. Счетчик был новый со всеми пломбами. Однако при полностью отключенной нагрузке диск счётчика медленно вращается, то есть у счётчика обнаружился «самоход». Понятно, платить товариществу за учитываемую счетчиком энергию, которую оно фактически не использовало, не хотелось.

Сначала решили, что счетчик неисправен. Заменяли счетчики несколько раз, но «самоход» оставался. В результате пришли к другому выводу - счетчик не виноват. Стали думать, что же вызывает подобный «самоход»? В заводской инструкции, приложенной к трёхфазному счетчику , записано: подключать счётчик к сети необходимо, соблюдая последовательность чередования фаз, чтобы фаза А сети была бы подключена к первому зажиму счётчика, фаза В - ко второму, а фаза С - к третьему зажиму счётчика.


.

Последовательность чередования фаз легко установить с помощью фазоуказателя. Таковой всегда имеется на электростанциях, в электрохозяйствах крупных заводов, но откуда ему быть в садоводческих товариществах? Наша попытка заполучить фазоуказатель на прокат на пару дней в крупном учреждении не удалась. Пришлось самим изготовить «Устройство для определения последовательности чередования фаз» , с помощью которого удалось определить эту правильную последовательность. В результате после устранения нарушения последовательности чередования фаз «самоход» счётчика исчез. Стало быть, отпала нужда платить за неиспользованную садоводами энергию.

Устройство для определения последовательности чередования фаз в трехфазной сети

Итак, вышеупомянутое «Устройство для определения последовательности чередования фаз» предназначено для определения фазы, в которой напряжение отстаёт от напряжения в фазе, произвольно взятой для начала отсчёта. Знание этого отставания необходимо для правильного подключения к сети приборов, в которых требуется соблюдать последовательность чередования фаз, например, трёхфазных четырёхпроводных (с нулем) электросчетчиков.

Конструкция устройства достаточно простая (рис. 1). На основании из электроизоляционного материала, например текстолита, размещены два настенных электропатрона с ввинченными в них обычными осветительными лампами накаливания, закрытыми прозрачными кожухами, изготовленными из пластиковой тары от соков, воды и т. д. На основании укреплены также конденсатор и клеммы для подключения проводов.

Одни выводы от ламп и конденсатора спаяны (точка О), другие концы проводов соединены с клеммами А, В и С (рис. 2).

Принцип действия «Устройства для определения последовательности чередования фаз» таков. При подключении «Устройства...» к трехфазной сети из-за наличия конденсатора в каждой фазе изменяется напряжение, что приводит к разному накалу ламп. (В нашем случае к конденсатору подсоединена фаза В.) По величине накала (яркости свечения ламп) и судят о принадлежности оставшихся фаз (проводов) к фазе А или к фазе С.

Здравствуйте, уважаемые гости и постоянные читатели сайта «Заметки электрика».

Несколько дней назад мне позвонил знакомый с просьбой разобраться в ситуации.

У него на объекте работала бригада электромонтажников.

Они занимались установкой двух силовых масляных трансформаторов 10/0,4 (кВ) мощностью 400 (кВА). С каждого трансформатора питались сборные шины 1 и 2 секций 0,4 (кВ). Между сборными шинами 1 и 2 секций был предусмотрен межсекционный автоматический выключатель.

Вот фото двух секций напряжением 400 (В).


При пусконаладочных работах решили попробовать включить оба трансформатора на параллельную работу. При включении произошло, при котором сработала защита сразу на двух вводных автоматических выключателях.


Стали разбираться. Условия включения трансформаторов на параллельную работу были соблюдены, но не все. Пришли к выводу, что не была соблюдена фазировка шин двух секций 400 (В). Бригада монтажников уверяет, что предварительную фазировку провела правильно. Чуть позже выяснилось, что фазировку они проводили с помощью фазоуказателя ФУ-2 на каждой секции и в обоих случаях прибор показал прямую последовательность фаз.

Фазоуказатель ФУ-2

Порядок чередования фаз (следования фаз) в трехфазной системе напряжений можно проверить с помощью переносного индукционного фазоуказателя типа ФУ-2. Вот так он выглядит.


Например, у счетчика СА4-И678 при обратной последовательности фаз начинается «самоход» диска. В современных электронных счетчиках типа СЭТ-4ТМ и ПСЧ-4ТМ при обратном чередовании фаз выдается на экран уведомление.

P.S. В следующих статьях мы поговорим о правильности проведения фазировки. Подписывайтесь на новости сайта, чтобы не пропустить выпуски новых статей.

Нередко при обслуживании электрооборудований необходимо проводить проверку чередования фаз и производить фазировку. Таким чаще всего пользуются при согласовании работы трансформаторов. В нашей статье мы опишем чередование фаз в 3-х фазной сети, необходимые инструменты и способы правильной фазировки.

Вводная история

Представим себе монтаж двух масляных трансформаторов. Электрики провели успешные пусконаладочные работы трансформаторов, вводных выключателей, шин и секционных разделителей. Но, когда попытались запустить трансформаторы параллельно, произошло короткое замыкание . Электромонтеры говорили, что произвели проверку чередования фаз, и все было в порядке. Но фазировку видимо никто не учел, что привело к такой ошибке. Давайте детально рассмотрим суть проблемы данного случая.

Что такое чередование фаз

Трехфазная сеть имеет три фазы, обозначаемые А, В и С. Если вспомнить физику, то это означает, что синусоиды фаз на 120˚ смещены друг от друга. Всего существует шесть типов порядков чередования, которые в свою очередь можно разделить на две группы – прямые и обратные. Прямые чередования выглядят как АВС, ВСА и САВ, а обратные – СВА, ВАС и АСВ. Для проверки чередования фаз используют прибор – фазоуказатель.

Что необходимо для проверки фаз

Фазоуказатель (см. рисунок ниже) состоит из трех обмоток и диска, который при проверке будет вращаться. Чтобы удобно было распознавать результат, на диске нанесены черно-белые метки. ФУ работает так же, как и асинхронный двигатель.

Если мы подключим три провода на выводы, то увидим, что диск начнет вращаться. Если он крутится по часовой стрелке, это означает прямое чередование фаз (АВС, ВСА или САВ).Если диск крутится против часовой стрелки, то это означает обратное чередование(СВА, ВАС или АСВ).

Вернемся к нашей истории с электромонтажниками, они проверили чередование фаз, которое в одном и другом случае совпало. Фазировку было выполнить необходимо, а тут не обойтись без фазоуказателя (ФУ). Электромонтажники соединили разноименные фазы при запуске, а для того, чтобы узнать где именно А, В и С надо было использовать мультиметр или осциллограф.

Прибор мультиметр измеряет напряжение между фазами разных источников питания, достижение отметки ноль означает, что фазы одноименные. В противоположном случае, линейное напряжение будет означать, что фазы разноименные. Такой способ самый быстрый и простой, но можно также использовать осциллограф, который будет показывать какая фаза отстает от другой на 120˚.

В каких случаях учитывают порядок

Проверка чередования фаз необходима при использовании трехфазных электродвигателей переменного тока. От порядка фаз зависит направление вращения двигателя, это очень важное условие, особенно когда несколько механизмов используют двигатели.

Еще один случай, когда необходимо обратить внимание на чередование фаз, это при работе с электросчетчиком индукционного типа СА4. При обратном порядке иногда случается самопроизвольное вращение диска на счетчике. Современные счетчики не настолько чувствительны к чередованию фаз, но у них на индикаторе тоже появится соответствующие данные.

Иногда контроль фазировки можно выполнить и без специальных приборов. Это если подключение трехфазной сети питания выполняется с помощью который можно в компании Югтелекабель. Если жилы внутри кабеля отличаются по цветам, то прозвонка осуществляется гораздо быстрее. Иногда просто нужно снять наружную изоляцию кабеля, чтобы понять, где какая фаза находится (А, В или С). Если на обоих концах жилы одинакового цвета, то они одинаковые.

Не всегда стоит полагаться на цветовую маркировку , не все производители придерживаются таких тенденций, иногда на разных концах кабеля можно встретить разные цвета . Поэтому лучше воспользоваться прозвонкой жил.

8.1.Основные понятия и определения

Электрическое оборудование трехфазного тока (синхронные компенсаторы, трансформаторы, линии электро-передачи) подлежит обязательной фазировке перед первым включением в сеть, а также после ремонта, при котором мог быть нарушен.порядок следования и чередования фаз.

В общем случае фазировка заключается в проверке совпадения по фазе напряжения каждой из трех фаз вклю-чаемой электроустановки с соответствующими фазами напряжения сети.

Фазировка включает в себя три существенно различные операции. Первая из них состоит в проверке и срав-нении порядка следования фаз включаемой электроустановки и сети. Вторая операция состоит в проверке совпадения по фазе одноименных напряжений, т. е. отсутствии между ними углового сдвига. Наконец, третья операция заключается в проверке одноименности (расцветки) фаз, соединение которых предполагается выполнить. Целью этой операции является проверка правильности соединения между собой всех элементов электроустановки, т. е. в конечном счете правильности подвода токопроводящих частей к включающему аппарату.

Фаза. Под трехфазной системой напряжений понимают совокупность трех симметричных напряжений, амплитуды которых равны по значению и сдвинуты (амплитуда синусоиды одного напряжения относительно предшествующей ей амплитуды синусоиды другого напряжения) на один и тот же фазный угол (рис. 8.1, а).

Таким образом, угол, характери-зующий определенную стадию перио-дически изменяющегося параметра (в данном случае напряжения) , называют фазным углом или просто фазой. При совместном рассмотрении двух (и более) синусоидально изменяющихся напряже-ний одной частоты, если их нулевые (или амплитудные) значения наступают не одновременно, говорят, что они сдвинуты по фазе. Сдвиг всегда определяется меж-ду одинаковыми фазами. Фазы обозна-чают прописными буквами А, В, С. Трехфазные системы изображают также вращающимися векторами (рис.8.1, б).

На практике под фазой, трехфазной системы понимают также отдельный участок трехфазной цепи, по ко-торому проходит один и тот же ток, сдвинутый относительно двух других по фазе. Исходя из этого, фазой назы-вают обмотку генератора, трансформатора, двигателя, провод трехфазной линии, чтобы подчеркнуть принадлежность их к определенному участку трехфазной цепи. Для распознавания фаз оборудования на кожухах аппаратов, шинах, опорах и конструкциях.наносят цветные метки в виде кружков, полос и т. д. Элементы оборудования, принадлежащие фазе А, окрашивают в желтый цвет, фазы В-в зеленый и фазы С-в красный. В соответствии с этим фазы часто называют желтой, зеленой и красной: ж, з, к.

Таким образом, в зависимости от рассматриваемого вопроса фаза - это либо угол, характеризующий состоя­ние синусоидально изменяющейся величины в каждый момент времени, либо участок трехфазной цепи, т. е. однофазная цепь, входящая в состав трехфазной.

Порядок следования фаз. Трехфазные системы напряжений и тока могут отличаться друг от друга порядком следования фаз. Если фазы (например, сети) следуют друг за другом в порядке А, В, С - это так называемый прямой порядок следования фаз (см. § 7.3). Если фазы следуют друг за другом в порядке А, С, В - это обратный порядок следования фаз.

Порядок следования фаз проверяют индукционным фазоуказателем типа И-517 или аналогичным по устройству фазоуказателем типа ФУ-2. Фазоуказатель подключают к проверяемой системе напряжений. Зажимы прибора маркированы, т. е. обозначены буквами А, В, С. Если фазы сети совпадут с маркировкой прибора, диск фазоуказателя будет вращаться в направлении, указанном стрелкой на кожухе прибора. Такое вращение диска соответствует прямому порядку следования фаз сети. Вращение диска в обратном направлении указывает на обратный порядок следования фаз. Получение прямого порядка следования фаз из обратного производится переменой мест двух любых фаз электроустановки.

Иногда вместо термина "порядок следования фаз" говорят "порядок чередования фаз". Во избежание пута­ницы условимся применять термин "чередование фаз" только в том случае, когда это связано с понятием фазы как участка трехфазной цепи.

Чередование фаз. Итак, под чередованием фаз следует понимать очередность, в которой фазы трехфазной цепи (обмотки и выводы электрических машин, провода линий и т. д.) расположены в пространстве, если обход их кажцый раз начинать из одного и того же пункта (точки) и производить в одном и том же направлении, например сверху вниз, по часовой стрелке и т. д. На основании такого определения говорят о чередовании обозначений выводов электрических машин и трансформаторов, расцветке проводов и сборных шин.

Совпадение фаз. При фазировке трехфазных цепей встречаются различные варианты чередования обозначений вводов на включающем аппарате и подачи на эти вводы напряжения разных фаз (рис. 8.2, а, б). Варианты, при которых не совпадает порядок следования фаз, или порядок чередования фаз электроустановки и сети, при включении выключателя приводят к КЗ.


В то же время возможен единственный вариант, когда совпадает то и другое. Короткое замыкание между соединяемыми частями (электроустановкой и сетью) здесь исключено.

Под совпадением фаз при фазировке как раз и понимают именно этот вариант, когда на вводы выключателя, попарно принадлежащие одной фазе, поданы одноименные напряжения, а обозначения (расцветка) вводов вы-ключателя согласованы с обозначением фаз напряжений (рис. 8.2, в).



Понравилась статья? Поделитесь с друзьями!