Из чего состоит рлс. Радиолокационная станция РЛС

Виды радиолокации. В радиолокационных системах находят применение активная, активная с активным ответом и пассивная радиолокация.

Активная радиолокация (рис. 2.1, а) предполагает, что обнаруживаемый объект, находящийся в точке О, не является источником радиосигналов. В такой РЛС передатчик генерирует зондирующий сигнал, аантенна в процессе обзора пространства облучает цель. Приемник (Прм) усиливает и преобразует принятый от цели отраженный сигнал и выдает его на выходное устройство решающее задачу обнаружения и измерения координат объекта.

Активная радиолокация с активным ответом (рис. 2.1,б) реализует принцип запрос - ответ и отличается тем, что обнаруживаемый объект оснащен ответчиком. Передатчик запросчика вырабатывает сигнал запроса, а антенна запросчика в процессе обзора пространства облучает объект, оснащенный ответчиком. Последний принимает сигнал запроса и посылает ответный сигнал на Приняв и обнаружив этот сигнал, запросчик с помощью выходного устройства находит координаты объекта, оснащенного ответчиком. В таких системах возможны кодированные запрос и ответ, что повышает помехоустойчивость линии передачи информации. Кроме того, по линии запросчик - ответчик можно передавать дополнительную информацию. Поскольку объект активный (имеется передатчик дальность действия РЛС увеличивается по сравнению с дальностью действия обычной активной радиолокационной системы, однако РЛС усложняется (иногда этот вид радиолокации называют вторичной радиолокацйей).

Пассивная радиолокация решает задачу обнаружения активного объекта, излучающего радиоволны (рис. 2.1,в). При пассивном обнаружении цели возможны две ситуации: когда на обнаруживаемом объекте имеется радиопередатчик, сигналы которого улавливаются пассивной РЛС, и когда принимается естественное излучение пассивного объекта в радио- или инфракрасном диапазоне волн, возникающее при температуре объекта выше абсолютного нуля и при температурном контрасте с окружающими объектами. Этот вид радиолокации отличается простотой и высокой защищенностью от помех.

Рис. 2.1. Структурные схемы вариантов РЛС

Виды радиолокационных систем. По характеру размещения частей аппаратуры в пространстве различают однопозиционные, двухпозиционные (бистатические) и многопозиционные РЛС. Последние два типа РЛС отличаются тем, что их аппаратура разнесена в пространстве и эти РЛС могут функционировать как самостоятельно, так и совместно (разнесенная радиолокация). Благодаря пространственному разнесению элементов в таких системах достигаются большие информативность и помехозащищенность, однако сама система усложняется.

Однопозиционные радиолокационные системы (ОПРЛС) отличаются тем, что вся аппаратура располагается на одной позиции. Далее будем обозначать такие системы РЛС. В ОПРЛС реализуется активный или пассивный вид радиолокации (см. рис. 2.1, а - в). При активной радиолокации с активным ответом аппаратура запросчика располагается в одной точке пространства, а ответчика - в другой. В зависимости от назначения РЛС и типа используемых сигналов структурные схемы ОПРЛС могут быть конкретизированы и при этом значительно отличаться друг от друга. Рассмотрим в качестве примера работу импульсной активной РЛС обнаружения воздушных целей для управления воздушным движением (УВД), структура которой приведена на рис. 2.2, а внешний вид на рис. 2.3. Устройство управления обзором (управления антенной) служит для просмотра пространства (обычно кругового) лучом антенны, узким в горизонтальной плоскости и широким в вертикальной.

В рассматриваемой ОПРЛС используется импульсный режим излучения, поэтому в момент окончания очередного зондирующего радиоимпульса единственная антенна переключается от передатчика к приемнику и используется для приема до начала генерации следующего зондирующего радиоимпульса, после чего антенна снова подключается к передатчику и т. д.

Рис. 2.2. Структурная схема РЛС обнаружения воздушных целей

Эта операция выполняется переключателем прием-передача (ППП). Пусковые импульсы, задающие период повторения зондирующих сигналов и синхронизирующие работу всех подсистем ОПРЛС, генерирует синхронизатор (Синх). Сигнал с приемника (Прм) после аналого-цифрового преобразователя АЦП поступает на аппаратуру обработки информации -процессор сигналов, где выполняется первичная обработка информации, состоящая в обнаружении сигнала и измерении координат цели. Отметки целей и трассы траекторий формируются при вторичной обработке информации в процессоре данных.

Рис. 2.3. Обзорная РЛС УВД «Днепр»

Сформированные сигналы вместе с информацией об угловом положении антенны передаются для дальнейшей обработки на командный пункт, а также для контроля на индикатор кругового обзора (ИКО). При автономной работе радиолокатора ИКО служит основным элементом для наблюдения воздушной обстановки. Такая РЛС обычно ведет обработку информации в цифровой форме. Для этого предусмотрено устройство преобразования сигнала в цифровой код (АЦП).

Бистатические радиолокационные системы (БиРЛС) представляют собой РЛС, в которых передающая и приемная части расположены в различных точках пространства (см. рис. 2.1, г). Такие БиРЛС основаны на активном виде радиолокации.


Радиолокация - это совокупность научных методов и технических средств, служащих для определения координат и характеристик объекта посредством радиоволн. Исследуемый объект часто именуют радиолокационной целью (или просто целью).

Радиотехническое оборудование и средства, предназначенные для выполнения задач радиолокации, получили название радиолокационных систем, или устройств (РЛС или РЛУ). Основы радиолокации базируются на следующих физических явлениях и свойствах:

  • В среде распространения радиоволны, встречая объекты с иными электрическими свойствами, рассеиваются на них. Волна, отраженная от цели (или ее собственное излучение), позволяет радиолокационным системам обнаружить и идентифицировать цель.
  • На больших расстояниях распространение радиоволн принимается прямолинейным, с постоянной скоростью в известной среде. Это допущение делает возможным до цели и ее угловых координат (с определенной ошибкой).
  • На основании эффекта Доплера по частоте принятого отраженного сигнала вычисляют радиальную скорость точки излучения относительно РЛУ.

Историческая справка

На способность радиоволн к отражению указывали великий физик Г. Герц и русский электротехник еще в конце XIX века. Согласно патенту от 1904 года, первый радар создал немецкий инженер К. Хюльмайер. Прибор, названный им телемобилоскопом, использовался на судах, бороздивших Рейн. В связи с развитием применение радиолокации выглядело очень перспективным в качестве элемента Исследования в этой области велись передовыми специалистами многих стран мира.

В 1932 году основной принцип радиолокации описал в своих работах научный сотрудник ЛЭФИ (Ленинградского электрофизического института) Павел Кондратьевич Ощепков. Им же в сотрудничестве с коллегами Б.К. Шембель и В.В. Цимбалиным летом 1934 года был продемонстрирован опытный образец радиолокационной установки, обнаружившей цель на высоте 150 м при удалении 600 м. Дальнейшие работы по совершенствованию средств радиолокации сводились к увеличению дальности их действия и повышению точности определения местоположения цели.

Природа электромагнитного излучения цели позволяет говорить о нескольких видах радиолокации:

  • Пассивная радиолокация исследует собственное излучение (тепловое, электромагнитное и т.п.), которое генерирует цели (ракеты, самолеты, космические объекты).
  • Активная с активным ответом осуществляется в случае, если объект оборудован собственным передатчиком и взаимодействие с ним происходит по алгоритму "запрос - ответ".
  • Активная с пассивным ответом предполагает исследование вторичного (отраженного) радиосигнала. в этом случае состоит из передатчика и приемника.
  • Полуактивная радиолокация - это частный случай активной, в случае когда приемник отраженного излучения расположен вне РЛС (например, является конструктивным элементом самонаводящейся ракеты).

Каждому виду свойственны свои достоинства и недостатки.

Методы и оборудование

Все средства радиолокации по используемому методу разделяют на РЛС непрерывного и импульсного излучения.

Первые содержат в своем составе передатчик и приемник излучения, действующие одновременно и непрерывно. По этому принципу были созданы первые радиолокационные устройства. Примером такой системы могут служить радиоальтиметр (авиационный прибор, определяющий удаление летательного аппарата от поверхности земли) или известный всем автолюбителям радар для определения скоростного режима транспортного средства.

При импульсном методе электромагнитная энергия излучается короткими импульсами в течение нескольких микросекунд. После станция ведет работу только на прием. После улавливания и регистрации отраженных радиоволн РЛС передает новый импульс и циклы повторяются.

Режимы работы РЛС

Существует два основных режима функционирования радиолокационных станций и устройств. Первый - сканирование пространства. Он осуществляется по строго заданной системе. При последовательном обзоре перемещение луча радара может носить круговой, спиральный, конический, секторный характер. Например, решетка антенны может медленно поворачиваться по кругу (по азимуту), одновременно сканируя по углу места (наклоняясь вверх и вниз). При параллельном сканировании обзор осуществляется пучком радиолокационных лучей. Каждому соответствует свой приемник, ведется обработка сразу нескольких информационных потоков.

Режим слежения подразумевает постоянную направленность антенны на выбранный объект. Для ее поворота, согласно с траекторией движущейся цели, используются специальные автоматизированные следящие системы.

Алгоритм определения дальности и направления

Скорость распространения электромагнитных волн в атмосфере составляет 300 тыс. км/с. Поэтому, зная время, затраченное транслируемым сигналом на преодоление расстояния от станции до цели и обратно, легко вычислить удаленность объекта. Для этого необходимо точно зафиксировать время отправки импульса и момент принятия отраженного сигнала.

Для получения информации о местонахождении цели используется остронаправленная радиолокация. Определение азимута и элевации (угла места или возвышения) объекта производится антенной с узким лучом. Современные РЛС используют для этого фазированные антенные решетки (ФАР), способные задавать более узкий луч и отличающиеся высокой скоростью вращения. Как правило, процесс сканирования пространства совершается минимум двумя лучами.

Основные параметры систем

От тактических и технических характеристик оборудования во многом зависит эффективность и качество решаемых задач.

К тактическим показателям РЛС причисляют:

  • Зону обзора, ограниченную минимальной и максимальной дальностью обнаружения цели, допустимым азимутальным углом и углом возвышения.
  • Разрешающую способность по дальности, азимуту, элевации и скорости (возможность определять параметры рядом расположенных целей).
  • Точность измерений, которая измеряется наличием грубых, систематических или случайных ошибок.
  • Помехозащищенность и надежность.
  • Степень автоматизации извлечения и обработки поступающего потока информационных данных.

Заданные тактические характеристики закладываются при проектировании устройств посредством определенных технических параметров, среди которых:

На боевом посту

Радиолокация - это универсальный инструмент, получивший широкое распространение в военной сфере, науке и народном хозяйстве. Области использования неуклонно расширяются благодаря развитию и совершенствованию технических средств и технологий измерений.

Применение радиолокации в военной отрасли позволяет решить важные задачи обзора и контроля пространства, обнаружения воздушных, наземных и водных мобильных целей. Без радаров невозможно представить оборудование, служащее для информационного обеспечения навигационных систем и систем управления орудийным огнем.

Военная радиолокация является базовой составляющей стратегической системы предупреждения о ракетном нападении и комплексной противоракетной обороны.

Радиоастрономия

Посланные с поверхности земли радиоволны также отражаются от объектов в ближнем и дальнем космосе, как и от околоземных целей. Многие космические объекты невозможно было полноценно исследовать лишь с использованием оптических инструментов, и только применение радиолокационных методов в астрономии позволило получить богатую информацию об их природе и структуре. Впервые пассивная радиолокация для исследования Луны была применена американскими и венгерскими астрономами в 1946 году. Примерно в то же время были случайно приняты и радиосигналы из космического пространства.

У современных радиотелескопов приемная антенна имеет форму большой вогнутой сферической чаши (подобно зеркалу оптического рефлектора). Чем больше ее диаметр, тем более слабый сигнал антенна сможет принять. Часто радиотелескопы работают комплексно, объединяя не только устройства, расположенные недалеко друг от друга, но и находящиеся на разных континентах. Среди важнейших задач современной радиоастрономии - изучение пульсаров и галактик с активными ядрами, исследование межзвездной среды.

Гражданское применение

В сельском и лесном хозяйстве радиолокационные устройства незаменимы при получении информации о распределении и плотности растительных массивов, изучении структуры, параметров и видов почв, своевременном обнаружении очагов возгораний. В географии и геологии радиолокация используется для выполнения топографических и геоморфологических работ, определения структуры и состава пород, поиска месторождений полезных ископаемых. В гидрологии и океанографии радиолокационными методами осуществляется контроль состояния главных водных артерий страны, снегового и ледяного покрова, картографирование береговой линии.

Радиолокация - это незаменимый помощник метеорологов. РЛС легко выяснит состояние атмосферы на удалении десятков километров, а по анализу полученных данных составляется прогноз изменения погодных условий в той или иной местности.

Перспективы развития

Для современной радиолокационной станции главным оценочным критерием выступает соотношение эффективности и качества. Под эффективностью понимаются обобщенные тактико-технические характеристики оборудования. Создание совершенной РЛС - сложная инженерная и научно-техническая задача, осуществление которой возможно только с использованием новейших достижений электромеханики и электроники, информатики и вычислительной техники, энергетики.

По прогнозам специалистов, в ближайшем будущем главными функциональными узлами станций самого разного уровня сложности и назначения будут твердотельные активные ФАР (фазированные антенные решетки), преобразующие аналоговые сигналы в цифровые. Развитие вычислительного комплекса позволит полностью автоматизировать управление и основные функции РЛС, предоставив конечному потребителю всесторонний анализ полученной информации.

Современные войны отличаются своей стремительностью и быстротечностью. Нередко победителями в боевых столкновениях выходят те, кто первыми смог обнаружить потенциальные угрозы и соответственно на них реагировал. Уже восьмой десяток лет для разведки и распознавания неприятеля на море и на суше, а также в воздушном пространстве используются радиолокационные методы.

Они основаны на излучении радиоволн с регистрацией их отражений от самых разнообразных объектов. Установки, которые посылают и принимают такие сигналы – современные радиолокационные станции или радары. Понятие «радар» происходит от английской аббревиатуры – RADAR. Оно появилось в 1941 году и давно вошло в языки мира.

Появление радаров стало знаковым событием. В современном мире практически не обойтись без радиолокационных станций. Без них не обходится авиация, мореплавание, гидрометцентр, ДПС, и пр. Более того радиолокационный комплекс широко используется в космических технологиях и в навигационных комплексах.

РЛС на военной службе

Все же больше всего радары приглянулись военным. Тем более, что эти технологии первоначально создавались для военного применения и практически реализовались перед Второй мировой войной. Все крупнейшие государства активно применяли РЛС для выявления кораблей и самолетов неприятеля. Причем их использование решало исход многих битв.

На сегодняшний день новые радиолокационные станции применяются в весьма широком спектре военных задач. Это и слежение за межконтинентальными баллистическими ракетами и артиллерийская разведка. Все самолеты, вертолеты, военные корабли обладают своими РЛС. Радары – это вообще основа систем ПВО.

Как работают радиолокаторы

Локация – это определение местопребывания чего-нибудь. Таким образом, радиолокация – это обнаружение предметов или объектов в пространстве с помощью радиоволн, которые излучаются и принимаются радиолокатором или РЛС. Принцип действия первичных или пассивных радаров основан на передаче в пространство радиоволн, отражаемых от объектов и возвращаемых к ним в виде отраженных сигналов. После их анализа, радары обнаруживают объекты в определенных точках пространства, их основные характеристики в виде скорости, высоты и размера. Все радары являются сложными радиотехническими устройствами из множества элементов.

Современный радиолокационный комплекс

Любые радары состоят из трех основных элементов:

  • Передатчиков сигналов;
  • Антенн;
  • Приемников.

Из всех радиолокационных станций имеется особенное подразделение по двум большим группам:

  • Импульсные;
  • Непрерывного действия.

Передатчики импульсных РЛС излучают электромагнитные волны на протяжении коротких промежутков времени (долей секунд). Следующие сигналы посылаются лишь тогда, как первые импульсы вернутся назад и попадут в приемники. Частоты повторения импульсов являются также важнейшими характеристиками. Так низкочастотными радиолокаторами посылается не одна сотня импульсов в течение минуты.

Антенны импульсных радаров работают как приемники-передатчики. Как только ушли сигналы, передатчики отключаются на время и включаются приемники. Вслед за их приемом происходят обратные процессы.

Импульсные радары обладают своими недостатками и преимуществами. Они могут определять дальности одновременно нескольких целей. Такие радары могут иметь по одной антенне, а их индикаторы весьма простые.

Однако излучаемые сигналы должны обладать большой мощностью. Импульсная схема имеется у всех современных радаров сопровождения. Импульсные радиолокационные станции в качестве источников сигналов обычно пользуются магнетронами или лампами бегущих волн.

Импульсные радарные системы

Антенны радаров фокусируют электромагнитные сигналы и направляют их, а также улавливают отраженные импульсы и передают его в приемники. В некоторых радиолокаторах прием-передача сигналов могут производиться с помощью разных антенн, находящихся одна от другой на больших расстояниях. Антенны радаров могут производить излучение электромагнитных волн по кругу или действовать в определенных секторах.

Лучи радаров могут быть направлены спирально или обладать формами конусов. При необходимости радары могут отслеживать движущиеся цели, и все время направлять на них антенны, используя специальные системы. Приемники занимаются обработкой полученных данных и передачей их на экраны операторов.

Одним из основных недостатков в работе импульсных радаров являются помехи, идущие от недвижимых объектов, от земной поверхности, гор, холмов. Так, бортовые импульсные радары в процессе их функционирования в самолетах будут принимать затенения от сигналов, отраженных земной поверхностью. Наземные или судовые радиолокационные комплексы выявляют эти проблемы в процессе обнаружения целей, которые летят на малых высотах. Для устранения таких помех пользуются эффектом Доплера.

Радары непрерывного действия

Радары непрерывного действия функционируют постоянным излучением электромагнитных волн и пользуются эффектом Доплера. Его принцип в том, что частоты электромагнитных волн, отраженные от объектов, приближающихся к источникам сигналов, будут выше, чем от удаляющихся объектов. При этом частоты излучаемых импульсов остаются неизменными. Такими радиолокаторами не фиксируются неподвижные объекты, их приемники улавливают только волны с частотами выше или ниже излучаемых.

Главный недостаток радаров непрерывного действия – это их неспособность определять расстояния до объектов. Однако при их работе не возникают помехи от неподвижных объектов между радарами и целями, либо за ними. Также у доплеровских радаров сравнительно простое устройство, которому для функционирования хватит и сигналов с малой мощностью. Кроме того, современные радиолокационные станции непрерывного излучения обладают возможностью определять расстояния до объектов. Для этого применяются изменения частот радаров в процессе их действия.

Известно еще и о так называемых вторичных радиолокаторах, используемых в авиации для опознавания самолетов. В таких радиолокационных комплексах имеются еще и самолетные ответчики. В ходе облучения воздушных судов электромагнитными сигналами ответчики выдают дополнительные данные, такие как высота, маршрут, номер борта, а также государственная принадлежность.

Разновидности радиолокационных станций

Радары могут разделяться длиной и частотой волн, на которых они действуют. В частности, когда исследуется земная поверхность и при работе на больших расстояниях, используются волны 0,9-6 м и 0,3-1 м. В управлении воздушного движения используются радары с длиной волн 7,5-15 см, а в загоризонтных радарах на станциях по обнаружению запусков ракет применяются 10-100-метровые волны.

Из истории развития радиолокации

Замысел об использовании радиолокации возник следом за открытием радиоволн. Так, в 1905 году сотрудником компании Siemens Кристианом Хюльсмейером был создан прибор, который при помощи радиоволн мог обнаруживать наличие крупных металлических объектов. Изобретателем было предложено устанавливать такие приборы на судах во избежание столкновений, например, при туманах. Тем не менее, в судовых компаниях не была выражена заинтересованность в новом приборе.

Были проведены радиолокационные исследования и на территории России. Так, еще в конце XIX столетия русским ученым Поповым было обнаружено то, что наличие металлических объектов препятствует распространению радиоволн.

В начале двадцатых годов американскими инженерами Альбертом Тейлором и Лeo Янгом при помощи радиоволн был обнаружен проплывающий корабль. Тем не менее, из-за того, что радиотехническая промышленность той поры была неразвитой, создавать радиолокационные станции в промышленных масштабах не представлялось возможным.

К производству первых радиолокационных станций, с помощью которых решались бы практические задачи, приступили в Англии в 30-х годах. Эта аппаратура была чрезвычайно громоздкой и могла устанавливаться либо на земле, либо на больших кораблях. Лишь в 1937 году создали первый миниатюрный радар, который можно было бы устанавливать на самолетах. В результате, перед Второй мировой войной у англичан имелась развернутая сеть с радиолокационными станциями именуемая Chain Home.

Радары периода Холодной войны

Во времена Холодной войны в Соединенных Штатах и в Советском Союзе появилась новая разновидность разрушительного оружия. Конечно же, это было появление межконтинентальных баллистических ракет. Своевременное выявление пусков таких ракет было животрепещущим.

Советский ученый Николай Кабанов предложил идею использовать короткие радиоволны для выявления воздушных судов противника на значительных дистанциях (до 3000 км). Все было достаточно просто. Ученый смог обнаружить, что 10-100-метровые радиоволны имеют расположенность к отражению от ионосферы.

Таким образом, при облучении целей на земной поверхности, они возвращаются также обратно к радарам. Позднее, основываясь на этой идее, ученые смогли разработать радары с загоризонтным обнаружением пуска баллистических ракет. Образцом таких установок может быть «Дарьял» - радиолокационная станция. Она целые десятилетия была в основе советских систем по предупреждению запусков ракет.

На сегодняшний день самым перспективным направлением в развитии радиолокационных систем принято считать создание радиолокационных станций с фазированными антенными решетками (ФАР). Такие устройства обладают не одним, а сотнями излучателей радиоволн. Всем их функционированием руководят мощные компьютеры. Излучаемые с помощью разных источников в ФАР радиоволны могут усиливаться одна другой, или наоборот, когда они будут совпадать по фазе либо ослабляться.

Сигналам радиолокационных станций с фазированными решетками могут придаваться любые необходимые формы. Они могут перемещаться в пространстве при отсутствии изменений в положениях самих антенн, а также функционировать на разных частотах излучения. Радары с фазированными решетками считаются надежнее и чувствительнее, чем такие же устройства с обычными антеннами.

Тем не менее, подобные радары обладают и недостатками. Самыми большими проблемами в радиолокационных станциях с ФАР являются их системы охлаждения. Более того, такие радарные установки отличаются чрезвычайной сложностью в процессе производства, а также весьма дорогостоящие.

Комплексы радаров с ФАР

О новых радиолокационных станциях с фазированными решетками известно то, что они уже сейчас устанавливаются на истребителях пятого поколения. Такие технологии используются в американских системах с ранним предупреждением о ракетных нападениях. Радиолокационные комплексы с ФАР предполагается устанавливать на «Арматах» — новейших танках российского производства. Многие эксперты отмечают, что РФ входит в число мировых лидеров, успешно разрабатывающих радиолокационные станции с ФАР.

Радиоволны, посланные в пространство, распространяются в нём со скоростью света. Но как только они встречают на своём пути какой-нибудь объект, например, самолёт или корабль, они отражаются от него и возвращаются обратно. Следовательно, с их помощью можно обнаруживать различные удалённые объекты, наблюдать за ними и определять их координаты и параметры.

Обнаружение местоположения объектов с помощью радиоволн называют радиолокацией .

Как появилась радиолокация

Александр Степанович Попов

В 1897 г. во время опытных сеансов радиосвязи между морским транспортом «Европа» и крейсером «Африка», проводимых русским физиком Александром Степановичем Поповым , обнаружили интересное явление. Оказалось, что правильность распространения электромагнитной волны искажали все металлические предметы – мачты, трубы, снасти как на корабле, с которого сигнал отправлялся, так и на корабле, где его принимали. Когда же между этими кораблями появился крейсер «Лейтенант Ильин», радиосвязь между ними нарушилась. Так было открыто явление отражения радиоволн от корпуса корабля.

Но если радиоволны способны отражаться от корабля, то с их помощью корабли можно и обнаруживать. А заодно и другие цели.

И уже в 1904 г. немецкий изобретатель Кристиан Хюльсмайер подал заявку на первый радиолокатор, а в 1905 г. получил патент на использование эффекта отражения радиоволн для поиска кораблей. А ещё через год, в 1906 г., он предложил использовать этот эффект, чтобы определять расстояние до объекта, отражающего радиоволны.

Кристиан Хюльсмайер

В 1934 г. шотландский физик Роберт Александр Уотсон-Уотт получил патент на изобретение системы для обнаружения воздушных объектов и уже в следующем году продемонстрировал одно из первых таких устройств.

Роберт Александр Уотсон-Уотт

Как работает радиолокатор

Определение местонахождения чего-либо называют локацией . Для этого в технике применяют устройство, называемое локатором . Локатор излучает какой-либо вид энергии, например, звук или оптический сигнал, в сторону предполагаемого объекта, а затем принимает отражённый от него сигнал. Радиолокатор использует для этой цели радиоволны.

На самом деле радиолокатор, или радиолокационная станция (РЛС), - сложная система. Конструкции различных радиолокаторов могут различаться, но принцип их работы одинаков. Радиопередатчик посылает в пространство радиоволны. Достигнув цели, они отражаются от неё, как от зеркала, и возвращаются назад. Такая радиолокация называется активной.

Основные узлы радиолокатора (РЛС) – передатчик, антенна, антенный переключатель, приёмник, индикатор.

По способу излучения радиоволн РЛС делятся на импульсные и непрерывного действия.

Как работает импульсная радиолокационная станция?

Передатчик радиоволн включается на короткое время, поэтому радиоволны излучаются импульсами. Они поступают в антенну, которая располагается в фокусе зеркала параболоидной формы. Это нужно для того, чтобы радиоволны распространялись в определённом направлении. Работа радиолокатора похожа на работу светового прожектора, лучи которого подобным образом направляются в небо и, освещая его, ищут нужный объект. Но работа прожектора этим и ограничивается. А радиолокатор не только посылает радиоволны, но и принимает сигнал, отражённый от найденного объекта (радиоэхо). Эту функцию выполняет приёмник.

Антенна импульсного радиолокатора работает то на передачу, то на приём. Для этого в ней есть переключатель. Как только радиосигнал послан, отключается передатчик и включается приёмник. Наступает пауза, во время которой радиолокатор как бы «слушает» эфир и ждёт радиоэхо. И как только антенна улавливает отражённый сигнал, тут же отключается приёмник и включается передатчик. И так далее. Причём время паузы может во много раз превышать длительность импульса. Таким образом излучаемый и принимаемый сигнал разделяются во времени.

Принятый радиосигнал усиливается и обрабатывается. На индикаторе, который в простейшем случае представляет собой дисплей, отображается обработанная информация, например, размеры объекта или расстояние до него, или сама цель и окружающая её обстановка.

Радиоволны распространяются в пространстве со скоростью света. Поэтому, зная время t от излучения импульса радиосигнала до его возвращения, можно определить расстояние до объекта.

R = t/2 ,

где с – скорость света.

Радиолокатор непрерывного действия высокочастотные радиоволны излучает непрерывно. Поэтому антенной улавливается также непрерывный отражённый сигнал. В своей работе такие РЛС используют эффект Доплера . Суть этого эффекта в том, что частота сигнала, отражённого от объекта, движущегося по направлению к радиолокатору, выше частоты сигнала, отражённого от объекта, удаляющегося от него, несмотря на то, что частота излучаемого сигнала постоянна. Поэтому такие РЛС используют для определения параметров движущегося объекта. Пример радиолокатора, в основе работы которого лежит эффект Доплера – радар, используемый сотрудниками ГИБДД для определения скорости движущегося автомобиля.

В поисках объекта направленный луч антенны РЛС сканирует пространство, описывая полный круг, либо выбирая определённый сектор. Он может быть направлен по винтовой линии, по спирали. Обзор также может быть коническим или линейным. Всё зависит от задачи, которую он должен выполнить.

Если необходимо постоянно следить за выбранной движущейся целью, антенна радиолокатора всё время направлена на неё и поворачивается вслед за ней с помощью специальных следящих систем.

Применение радиолокаторов

Впервые радиолокационные станции начали применяться во время Второй мировой войны для обнаружения военных самолётов, кораблей и подводных лодок.

Так в конце декабря 1943 г. радиолокаторы, установленные на английских кораблях, помогли обнаружить фашистский линкор, вышедший ночью из порта Альтенфиорд в Норвегии, чтобы перехватить военные суда. Огонь по линкору вёлся очень точно, и вскоре он пошёл ко дну.

Первые РЛС были не очень совершенными, в отличие от современных, надёжно защищающих воздушное пространство от воздушных налётов и ракетного нападения, распознающих практически любые военные объекты на суше и на море. Радиолокационное наведение применяется в самонаводящихся ракетах для распознавания местности. РЛС осуществляют слежение за полётами межконтинентальных ракет.

РЛС нашли своё применение и в мирной жизни. Без них не могут обходиться лоцманы, проводящие корабли через узкие проливы, диспетчеры в аэропортах, руководящие полётами гражданских самолётов. Они незаменимы при плавании в условиях ограниченной видимости – ночью или при плохой погоде. С их помощью определяют рельеф дна морей и океанов, исследуют загрязнения их поверхностей. Их используют метеорологи для определения грозовых фронтов, измерения скорости ветра и облаков. На рыболовных судах радиолокаторы помогают обнаруживать косяки рыбы.

Очень часто радиолокаторы, или радиолокационные станции (РЛС), называют радарами . И хоть сейчас это слово стало самостоятельным, на самом деле это аббревиатура, возникшая из английских слов «radio detection and ranging » , что означает «радиообнаружение и дальнометрия» и отражает суть радиолокации.

В нашей стране официально зарегистрировано и разрешено к медицинскому применению почти 15 тысяч лекарств и еще несколько тысяч биологически активных добавок к пище. Если же их считать с лекарственными формами, то наберется несколько десятков тысяч. Так что запутаться ничего не стоит. Чтобы вы всегда могли найти ответ на свой запрос, создатели системы РЛС поместили все имеющиеся сведения в базу данных, которая и служит основой для всех справочников системы РЛС. О каждом из них мы подробнее скажем ниже. А сейчас главное понять, что исчерпывающую информацию можно получить, только если пользоваться всей системой , а не отдельной ее частью.

Из чего состоит система РЛС?

Книга, которую вы держите в руках – РЛС-ПАЦИЕНТ, является частью уникальной системы справочников РЛС России. Эта система информации о лекарствах включает в себя четыре ежегодных печатных издания с общим тиражом около 300 000 экземпляров и три электронных справочника (рисунок 2.2.2).

ЭНЦИКЛОПЕДИЯ ЛЕКАРСТВ (вверху слева на рисунке 2.2.2) содержит новейшую информацию об отечественных и зарубежных препаратах (включая субстанции, биологически активные добавки к пище, гомеопатические и диагностические средства), заявленных производителями к поставкам. Книга подготовлена ведущими фармакологами страны и рассчитана на врачей, провизоров и других специалистов сферы лекарственного обеспечения. Ежегодное издание, снабженное предметным, фармакологическим, нозологическим на основе Международной классификации болезней десятого пересмотра (МКБ-10) указателями, указателем анатомо-терапевтическо-химической классификации, цветным идентификатором лекарств, указателем производителей лекарственных средств или их представительств в России с адресами офисов и перечнем выпускаемой продукции.

РЛС-АПТЕКАРЬ (вторая сверху книга слева на рисунке 2.2.2) включает все, что зарегистрировано в России. Содержит информацию обо всех лекарственных средствах и биологически активных добавках к пище, зарегистрированных в России, а также о многих изделиях медицинского назначения, санитарно-гигиенических средствах, средствах ухода за больными и о многих других товарах, которые вы можете встретить в аптеках. А это ни много ни мало свыше 50 000 названий. Объединяет все официальные сведения из Государственного реестра лекарственных средств, Федерального реестра биологически активных добавок к пище, Федерального реестра гигиенических заключений. Ежегодное издание. Полная информация для провизора – все существующие формы выпуска, условия хранения, сроки годности, условия отпуска, принадлежность к различным спискам и многое другое. Легкий поиск синонимов и аналогов по действующим веществам и Фармакологическому указателю.

РЛС-ДОКТОР (вверху справа на рисунке 2.2.2) обеспечит неоценимую помощь практикующим врачам при назначении лекарств. Ежегодное издание. Наиболее часто используемые лекарства и их подробные описания. Нозологический указатель, основанный на МКБ-10. Адреса, телефоны производителей.

РЛС-ПАЦИЕНТ – книга о механизмах действия лекарств и обеспечении хорошего самочувствия. Она поможет врачу повысить эффективность общения с пациентом и, как следствие, сделает лечение более продуктивным. Эта книга у вас в руках, и вы можете оценить ее.

Компьютерная версия РЛС-CD: ЭНЦИКЛОПЕДИЯ ЛЕКАРСТВ – вся накопленная база данных РЛС для настоящих профессионалов, кто хочет узнавать новости раньше всех и ценит свое время. Ежеквартальное обновление, современный дружелюбный интерфейс, различные варианты поиска, включая контекстный.

РЛС-CD: НОМЕНКЛАТУРА ЛЕКАРСТВЕННЫХ СРЕДСТВ – полный перечень зарегистрированной в России фармацевтической продукции. Включает сочетание 21 признака, описывающего торговую упаковку товара. Единый язык для общения на фармацевтическом рынке, позволяющий внедрить базу данных РЛС в свою информационную среду и обеспечить связь с другими системами, использующими номенклатуру РЛС.

Понравилась статья? Поделитесь с друзьями!